scholarly journals Corn Residue Covered Area Mapping with a Deep Learning Method Using Chinese GF-1 B/D High Resolution Remote Sensing Images

2021 ◽  
Vol 13 (15) ◽  
pp. 2903
Author(s):  
Wancheng Tao ◽  
Zixuan Xie ◽  
Ying Zhang ◽  
Jiayu Li ◽  
Fu Xuan ◽  
...  

Black soil is one of the most productive soils with high organic matter content. Crop residue covering is important for protecting black soil from alleviating soil erosion and increasing soil organic carbon. Mapping crop residue covered areas accurately using remote sensing images can monitor the protection of black soil in regional areas. Considering the inhomogeneity and randomness, resulting from human management difference, the high spatial resolution Chinese GF-1 B/D image and developed MSCU-net+C deep learning method are used to mapping corn residue covered area (CRCA) in this study. The developed MSCU-net+C is joined by a multiscale convolution group (MSCG), the global loss function, and Convolutional Block Attention Module (CBAM) based on U-net and the full connected conditional random field (FCCRF). The effectiveness of the proposed MSCU-net+C is validated by the ablation experiment and comparison experiment for mapping CRCA in Lishu County, Jilin Province, China. The accuracy assessment results show that the developed MSCU-net+C improve the CRCA classification accuracy from IOUAVG = 0.8604 and KappaAVG = 0.8864 to IOUAVG = 0.9081 and KappaAVG = 0.9258 compared with U-net. Our developed and other deep semantic segmentation networks (MU-net, GU-net, MSCU-net, SegNet, and Dlv3+) improve the classification accuracy of IOUAVG/KappaAVG with 0.0091/0.0058, 0.0133/0.0091, 0.044/0.0345, 0.0104/0.0069, and 0.0107/0.0072 compared with U-net, respectively. The classification accuracies of IOUAVG/KappaAVG of traditional machine learning methods, including support vector machine (SVM) and neural network (NN), are 0.576/0.5526 and 0.6417/0.6482, respectively. These results reveal that the developed MSCU-net+C can be used to map CRCA for monitoring black soil protection.

2019 ◽  
Vol 10 (4) ◽  
pp. 381-390 ◽  
Author(s):  
Ye Li ◽  
Lele Xu ◽  
Jun Rao ◽  
Lili Guo ◽  
Zhen Yan ◽  
...  

2020 ◽  
Vol 12 (22) ◽  
pp. 3845
Author(s):  
Zhiyu Xu ◽  
Yi Zhou ◽  
Shixin Wang ◽  
Litao Wang ◽  
Feng Li ◽  
...  

The real-time, accurate, and refined monitoring of urban green space status information is of great significance in the construction of urban ecological environment and the improvement of urban ecological benefits. The high-resolution technology can provide abundant information of ground objects, which makes the information of urban green surface more complicated. The existing classification methods are challenging to meet the classification accuracy and automation requirements of high-resolution images. This paper proposed a deep learning classification method for urban green space based on phenological features constraints in order to make full use of the spectral and spatial information of green space provided by high-resolution remote sensing images (GaoFen-2) in different periods. The vegetation phenological features were added as auxiliary bands to the deep learning network for training and classification. We used the HRNet (High-Resolution Network) as our model and introduced the Focal Tversky Loss function to solve the sample imbalance problem. The experimental results show that the introduction of phenological features into HRNet model training can effectively improve urban green space classification accuracy by solving the problem of misclassification of evergreen and deciduous trees. The improvement rate of F1-Score of deciduous trees, evergreen trees, and grassland were 0.48%, 4.77%, and 3.93%, respectively, which proved that the combination of vegetation phenology and high-resolution remote sensing image can improve the results of deep learning urban green space classification.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2893
Author(s):  
Nafiseh Kakhani ◽  
Mehdi Mokhtarzade ◽  
Mohammad Javad Valadan Zoej

Since the technology of remote sensing has been improved recently, the spatial resolution of satellite images is getting finer. This enables us to precisely analyze the small complex objects in a scene through remote sensing images. Thus, the need to develop new, efficient algorithms like spatial-spectral classification methods is growing. One of the most successful approaches is based on extinction profile (EP), which can extract contextual information from remote sensing data. Moreover, deep learning classifiers have drawn attention in the remote sensing community in the past few years. Recent progress has shown the effectiveness of deep learning at solving different problems, particularly segmentation tasks. This paper proposes a novel approach based on a new concept, which is differential extinction profile (DEP). DEP makes it possible to have an input feature vector with both spectral and spatial information. The input vector is then fed into a proposed straightforward deep-learning-based classifier to produce a thematic map. The approach is carried out on two different urban datasets from Pleiades and World-View 2 satellites. In order to prove the capabilities of the suggested approach, we compare the final results to the results of other classification strategies with different input vectors and various types of common classifiers, such as support vector machine (SVM) and random forests (RF). It can be concluded that the proposed approach is significantly improved in terms of three kinds of criteria, which are overall accuracy, Kappa coefficient, and total disagreement.


2021 ◽  
Vol 13 (8) ◽  
pp. 1507
Author(s):  
Haibo Wang ◽  
Jianchao Qi ◽  
Yufei Lei ◽  
Jun Wu ◽  
Bo Li ◽  
...  

Automatic detection of newly constructed building areas (NCBAs) plays an important role in addressing issues of ecological environment monitoring, urban management, and urban planning. Compared with low-and-middle resolution remote sensing images, high-resolution remote sensing images are superior in spatial resolution and display of refined spatial details. Yet its problems of spectral heterogeneity and complexity have impeded research of change detection for high-resolution remote sensing images. As generalized machine learning (including deep learning) technologies proceed, the efficiency and accuracy of recognition for ground-object in remote sensing have been substantially improved, providing a new solution for change detection of high-resolution remote sensing images. To this end, this study proposes a refined NCBAs detection method consisting of four parts based on generalized machine learning: (1) pre-processing; (2) candidate NCBAs are obtained by means of bi-temporal building masks acquired by deep learning semantic segmentation, and then registered one by one; (3) rules and support vector machine (SVM) are jointly adopted for classification of NCBAs with high, medium and low confidence; and (4) the final vectors of NCBAs are obtained by post-processing. In addition, area-based and pixel-based methods are adopted for accuracy assessment. Firstly, the proposed method is applied to three groups of GF1 images covering the urban fringe areas of Jinan, whose experimental results are divided into three categories: high, high-medium, and high-medium-low confidence. The results show that NCBAs of high confidence share the highest F1 score and the best overall effect. Therefore, only NCBAs of high confidence are considered to be the final detection result by this method. Specifically, in NCBAs detection for three groups GF1 images in Jinan, the mean Recall of area-based and pixel-based assessment methods reach around 77% and 91%, respectively, the mean Pixel Accuracy (PA) 88% and 92%, and the mean F1 82% and 91%, confirming the effectiveness of this method on GF1. Similarly, the proposed method is applied to two groups of ZY302 images in Xi’an and Kunming. The scores of F1 for two groups of ZY302 images are also above 90% respectively, confirming the effectiveness of this method on ZY302. It can be concluded that adoption of area registration improves registration efficiency, and the joint use of prior rules and SVM classifier with probability features could avoid over and missing detection for NCBAs. In practical applications, this method is contributive to automatic NCBAs detection from high-resolution remote sensing images.


Author(s):  
L. Xin

Utilizing high-resolution remote sensing images for earth observation has become the common method of land use monitoring. It requires great human participation when dealing with traditional image interpretation, which is inefficient and difficult to guarantee the accuracy. At present, the artificial intelligent method such as deep learning has a large number of advantages in the aspect of image recognition. By means of a large amount of remote sensing image samples and deep neural network models, we can rapidly decipher the objects of interest such as buildings, etc. Whether in terms of efficiency or accuracy, deep learning method is more preponderant. This paper explains the research of deep learning method by a great mount of remote sensing image samples and verifies the feasibility of building extraction via experiments.


2020 ◽  
Vol 12 (3) ◽  
pp. 466
Author(s):  
Xue Yang ◽  
Feng Li ◽  
Lei Xin ◽  
Xiaotian Lu ◽  
Ming Lu ◽  
...  

Super-resolution (SR) technology has shown great potential for improving the performance of the mapping and classification of multispectral satellite images. However, it is very challenging to solve ill-conditioned problems such as mapping for remote sensing images due to the presence of complicated ground features. In this paper, we address this problem by proposing a super-resolution reconstruction (SRR) mapping method called the mixed sparse representation non-convex high-order total variation (MSR-NCHOTV) method in order to accurately classify multispectral images and refine object classes. Firstly, MSR-NCHOTV is employed to reconstruct high-resolution images from low-resolution time-series images obtained from the Gaofen-4 (GF-4) geostationary orbit satellite. Secondly, a support vector machine (SVM) method was used to classify the results of SRR using the GF-4 geostationary orbit satellite images. Two sets of GF-4 satellite image data were used for experiments, and the MSR-NCHOTV SRR result obtained using these data was compared with the SRR results obtained using the bilinear interpolation (BI), projection onto convex sets (POCS), and iterative back projection (IBP) methods. The sharpness of the SRR results was evaluated using the gray-level variation between adjacent pixels, and the signal-to-noise ratio (SNR) of the SRR results was evaluated by using the measurement of high spatial resolution remote sensing images. For example, compared with the values obtained using the BI method, the average sharpness and SNR of the five bands obtained using the MSR-NCHOTV method were higher by 39.54% and 51.52%, respectively, and the overall accuracy (OA) and Kappa coefficient of the classification results obtained using the MSR-NCHOTV method were higher by 32.20% and 46.14%, respectively. These results showed that the MSR-NCHOTV method can effectively improve image clarity, enrich image texture details, enhance image quality, and improve image classification accuracy. Thus, the effectiveness and feasibility of using the proposed SRR method to improve the classification accuracy of remote sensing images was verified.


2021 ◽  
Vol 26 (1) ◽  
pp. 200-215
Author(s):  
Muhammad Alam ◽  
Jian-Feng Wang ◽  
Cong Guangpei ◽  
LV Yunrong ◽  
Yuanfang Chen

AbstractIn recent years, the success of deep learning in natural scene image processing boosted its application in the analysis of remote sensing images. In this paper, we applied Convolutional Neural Networks (CNN) on the semantic segmentation of remote sensing images. We improve the Encoder- Decoder CNN structure SegNet with index pooling and U-net to make them suitable for multi-targets semantic segmentation of remote sensing images. The results show that these two models have their own advantages and disadvantages on the segmentation of different objects. In addition, we propose an integrated algorithm that integrates these two models. Experimental results show that the presented integrated algorithm can exploite the advantages of both the models for multi-target segmentation and achieve a better segmentation compared to these two models.


Sign in / Sign up

Export Citation Format

Share Document