scholarly journals Numerical Study of Global ELF Electromagnetic Wave Propagation with Respect to Lithosphere–Atmosphere–Ionosphere Coupling

2021 ◽  
Vol 13 (20) ◽  
pp. 4107
Author(s):  
Zhuangkai Wang ◽  
Chen Zhou ◽  
Shufan Zhao ◽  
Xiang Xu ◽  
Moran Liu ◽  
...  

Before and after earthquakes, abnormal physical and chemical phenomena can be observed by gathering ground-based and satellite data and interpreted by the lithosphere–atmosphere–ionosphere coupling (LAIC) mechanism. In this study, we focused on the mechanism of LAIC electromagnetic radiation and investigated the seismic electromagnetic (EM) wave generated in the lithosphere by earthquakes and its global propagation process from the lithosphere through the atmosphere and into the bottom of ionosphere, in order to analyze the abnormal disturbance of ground-based and space-based observation results. First, analytic formulas of the electrokinetic effect were used to simulate the generation and propagation process of the seismic EM wave in the lithosphere, interpreted as the conversion process of the seismic wave and EM wave in porous media. Second, we constructed a three-dimensional Earth–ionosphere waveguide by applying the finite-difference time-domain (FDTD) algorithm to model the global propagation process of the seismic EM wave into the atmosphere and cavity between the bottom of the ionosphere and the surface of the Earth. By combining the model of the electrokinetic effect in the lithosphere with the numerical model of the Earth–ionosphere waveguide in the atmosphere and ionosphere, we numerically simulated the global transmission process of extremely low-frequency (ELF: 3 Hz–3000 Hz) EM waves which are related to earthquakes. The propagation parameters of coseismic ELF EM waves with different duration times and center frequencies were analyzed and summarized. The simulation results demonstrate that the distribution characteristics of an electric field along longitude, latitude and altitude with time are periodic and the time interval during which an EM wave travels around the whole Earth is approximately 0.155 s when adopting the conductivity of the knee profile. We also compared the observation data with the simulation results and found that the attenuating trends of the ELF electric field are consistent. This proposed ELF EM wave propagation model of lithosphere–atmosphere–ionosphere coupling is very promising for the explanation of abnormal disturbances of ground-based and space-based observation results of ELF EM fields which are associated with earthquakes.

1995 ◽  
Vol 17 (4) ◽  
pp. 6-12
Author(s):  
Nguyen Tien Dat ◽  
Dinh Van Manh ◽  
Nguyen Minh Son

A mathematical model on linear wave propagation toward shore is chosen and corresponding software is built. The wave transformation outside and inside the surf zone is considered including the diffraction effect. The model is tested by laboratory and field data and gave reasonables results.


GIS Business ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 12-14
Author(s):  
Eicher, A

Our goal is to establish the earth observation data in the business world Unser Ziel ist es, die Erdbeobachtungsdaten in der Geschäftswelt zu etablieren


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 586
Author(s):  
Che-Jui Chang ◽  
Jean-Fu Kiang

Strong flares and coronal mass ejections (CMEs), launched from δ-sunspots, are the most catastrophic energy-releasing events in the solar system. The formations of δ-sunspots and relevant polarity inversion lines (PILs) are crucial for the understanding of flare eruptions and CMEs. In this work, the kink-stable, spot-spot-type δ-sunspots induced by flux emergence are simulated, under different subphotospheric initial conditions of magnetic field strength, radius, twist, and depth. The time evolution of various plasma variables of the δ-sunspots are simulated and compared with the observation data, including magnetic bipolar structures, relevant PILs, and temperature. The simulation results show that magnetic polarities display switchbacks at a certain stage and then split into numerous fragments. The simulated fragmentation phenomenon in some δ-sunspots may provide leads for future observations in the field.


2020 ◽  
Vol 8 (11) ◽  
pp. 871
Author(s):  
Masayuki Banno ◽  
Satoshi Nakamura ◽  
Taichi Kosako ◽  
Yasuyuki Nakagawa ◽  
Shin-ichi Yanagishima ◽  
...  

Long-term beach observation data for several decades are essential to validate beach morphodynamic models that are used to predict coastal responses to sea-level rise and wave climate changes. At the Hasaki coast, Japan, the beach profile has been measured for 34 years at a daily to weekly time interval. This beach morphological dataset is one of the longest and most high-frequency measurements of the beach morphological change worldwide. The profile data, with more than 6800 records, reflect short- to long-term beach morphological change, showing coastal dune development, foreshore morphological change and longshore bar movement. We investigated the temporal beach variability from the decadal and monthly variations in elevation. Extremely high waves and tidal anomalies from an extratropical cyclone caused a significant change in the long-term bar behavior and foreshore slope. The berm and bar variability were also affected by seasonal wave and water level variations. The variabilities identified here from the long-term observations contribute to our understanding of various coastal phenomena.


2013 ◽  
Vol 805-806 ◽  
pp. 688-692
Author(s):  
Xin Fang ◽  
Xue Liang Huang ◽  
Yan Zhu

Nowadays, there are various devices to detect the power quality of AC grid, where uncertainty of voltage deviation is an important parameter to investigate the power quality. National standards specify several sinusoidal waveforms to detect it, usually implemented into the detecting devices. But these waveforms are not enough and a novel method of detecting measurement uncertainty of voltage deviation is proposed in this paper. A series of detection waveforms are designed using this method. The simulation results verify that the method is available to measure uncertainty of voltage deviation more accurately. Moreover, it can be used to justify whether the basic measurement time interval of voltage deviation meets IEC standard requirements.


Sign in / Sign up

Export Citation Format

Share Document