scholarly journals Assessing Changes in Terrestrial Water Storage Components over the Great Artesian Basin Using Satellite Observations

2021 ◽  
Vol 13 (21) ◽  
pp. 4458
Author(s):  
Pankaj R. Kaushik ◽  
Christopher E. Ndehedehe ◽  
Ryan M. Burrows ◽  
Mark R. Noll ◽  
Mark J. Kennard

The influence of climate change and anthropogenic activities (e.g., water withdrawals) on groundwater basins has gained attention recently across the globe. However, the understanding of hydrological stores (e.g., groundwater storage) in one of the largest and deepest artesian basins, the Great Artesian Basin (GAB) is limited due to the poor distribution of groundwater monitoring bores. In this study, Gravity Recovery and Climate Experiment (GRACE) satellite and ancillary data from observations and models (soil moisture, rainfall, and evapotranspiration (ET)) were used to assess changes in terrestrial water storage and groundwater storage (GWS) variations across the GAB and its sub-basins (Carpentaria, Surat, Western Eromanga, and Central Eromanga). Results show that there is strong relationship of GWS variation with rainfall (r = 0.9) and ET (r = 0.9 to 1) in the Surat and some parts of the Carpentaria sub-basin in the GAB (2002–2017). Using multi-variate methods, we found that variation in GWS is primarily driven by rainfall in the Carpentaria sub-basin. While changes in rainfall account for much of the observed spatio-temporal distribution of water storage changes in Carpentaria and some parts of the Surat sub-basin (r = 0.90 at 0–2 months lag), the relationship of GWS with rainfall and ET in Central Eromanga sub-basin (r = 0.10–0.30 at more than 12 months lag) suggest the effects of human water extraction in the GAB.

2016 ◽  
Vol 17 (2) ◽  
pp. 324-341 ◽  
Author(s):  
Jiabao Yan ◽  
Shaofeng Jia ◽  
Aifeng Lv ◽  
Rashid Mahmood ◽  
Wenbin Zhu

The Great Artesian Basin (GAB) in Australia, the largest artesian basin in the world, is rich in groundwater resources. This study analyzed the spatio-temporal characteristics of terrestrial water storage (TWS) in the GAB for 2003–2014 using satellite (Gravity Recovery and Climate Experiment, GRACE) data, hydrological models’ outputs, and in situ data. A slight increase in TWS was observed for the study period. However, there was a rapid increase in TWS in 2010 and 2011 due to two strong La Nina events. Long-term mean monthly TWS changes showed remarkable agreements with net precipitation. Both GRACE derived and in situ groundwater disclosed similar trend patterns. Groundwater estimated from the PCR-GLOBWB model contributes 26.8% (26.4% from GRACE) to the total TWS variation in the entire basin and even more than 50% in the northern regions. Surface water contributes only 3% to the whole basin but more than 60% to Lake Eyre and the Cooper River. Groundwater, especially deeper than 50 meters, was insensitive to climate factors (i.e., rainfall). Similarly, the groundwater in the northern Cape York Peninsula was influenced by some other factors rather than precipitation. The time-lagged correlation analysis between sea surface height and groundwater storage indicated certain correlations between groundwater and sea level changes.


2017 ◽  
Vol 21 (9) ◽  
pp. 4533-4549 ◽  
Author(s):  
Mohammad Shamsudduha ◽  
Richard G. Taylor ◽  
Darren Jones ◽  
Laurent Longuevergne ◽  
Michael Owor ◽  
...  

Abstract. GRACE (Gravity Recovery and Climate Experiment) satellite data monitor large-scale changes in total terrestrial water storage (ΔTWS), providing an invaluable tool where in situ observations are limited. Substantial uncertainty remains, however, in the amplitude of GRACE gravity signals and the disaggregation of TWS into individual terrestrial water stores (e.g. groundwater storage). Here, we test the phase and amplitude of three GRACE ΔTWS signals from five commonly used gridded products (i.e. NASA's GRCTellus: CSR, JPL, GFZ; JPL-Mascons; GRGS GRACE) using in situ data and modelled soil moisture from the Global Land Data Assimilation System (GLDAS) in two sub-basins (LVB: Lake Victoria Basin; LKB: Lake Kyoga Basin) of the Upper Nile Basin. The analysis extends from January 2003 to December 2012, but focuses on a large and accurately observed reduction in ΔTWS of 83 km3 from 2003 to 2006 in the Lake Victoria Basin. We reveal substantial variability in current GRACE products to quantify the reduction of ΔTWS in Lake Victoria that ranges from 80 km3 (JPL-Mascons) to 69 and 31 km3 for GRGS and GRCTellus respectively. Representation of the phase in TWS in the Upper Nile Basin by GRACE products varies but is generally robust with GRGS, JPL-Mascons, and GRCTellus (ensemble mean of CSR, JPL, and GFZ time-series data), explaining 90, 84, and 75 % of the variance respectively in "in situ" or "bottom-up" ΔTWS in the LVB. Resolution of changes in groundwater storage (ΔGWS) from GRACE ΔTWS is greatly constrained by both uncertainty in changes in soil-moisture storage (ΔSMS) modelled by GLDAS LSMs (CLM, NOAH, VIC) and the low annual amplitudes in ΔGWS (e.g. 1.8–4.9 cm) observed in deeply weathered crystalline rocks underlying the Upper Nile Basin. Our study highlights the substantial uncertainty in the amplitude of ΔTWS that can result from different data-processing strategies in commonly used, gridded GRACE products; this uncertainty is disregarded in analyses of ΔTWS and individual stores applying a single GRACE product.


2017 ◽  
Author(s):  
Mohammad Shamsudduha ◽  
Richard G. Taylor ◽  
Darren Jones ◽  
Laurent Longuevergne ◽  
Michael Owor ◽  
...  

Abstract. GRACE (Gravity Recovery and Climate Experiment) satellite data monitor large-scale changes in total terrestrial water storage (ΔTWS) providing an invaluable tool where in situ observations are limited. Substantial uncertainty remains, however, in the amplitude of GRACE gravity signals and the disaggregation of ΔTWS into individual terrestrial water stores (e.g. groundwater storage). Here, we test the phase and amplitude of GRACE ΔTWS signals from 5 commonly-used gridded products (i.e., NASA's GRCTellus: CSR, JPL GFZ; JPL-Mascons; GRGS GRACE) using in situ data and modelled soil-moisture from the Global Land Data Assimilation System (GLDAS). The focus of this analysis is a large and accurately observed reduction in ΔTWS of 75 km3 from 2004 to 2006 in Lake Victoria in the Upper Nile Basin. We reveal substantial variability in current GRACE products to quantify the reduction of ΔTWS in Lake Victoria that ranges from 68 km3 (GRGS) to 50 km3 and 26 km3 for JPL-Mascons and GRCTellus, respectively. Representation of the phase in ΔTWS in the Upper Nile Basin by GRACE products varies but is generally robust with GRGS, JPL-Mascons and GRCTellus (ensemble mean of CSR, JPL and GFZ time-series data) explaining 91 %, 85 %, and 77 % of the variance, respectively, in in-situ ΔTWS. Resolution of changes in groundwater storage (ΔGWS) from GRACE ΔTWS is greatly constrained by both uncertainty in modelled changes in soil-moisture storage (ΔSMS) and the low annual amplitudes in ΔGWS (e.g., 3.5 to 4.4 cm) observed in deeply weathered crystalline rocks underlying the Upper Nile Basin. Our study highlights the substantial uncertainty in the amplitude of ΔTWS that can result from different data-processing strategies in commonly used, gridded GRACE products.


2021 ◽  
Author(s):  
Yu Zhu ◽  
Shiyin Liu ◽  
Ying Yi ◽  
Fuming Xie ◽  
Wenfei Miao

<p>The Indus River Basin (the Indus) is facing the threat of great water shortages due to rapid population growth, expanding of irrigation area and increasing meltwater from snow and ice under the background of global warming. Being a less gauged basin, the effective usage of water resources in the Indus is always challenged by the high variability of the surface and ground water under a warming climate. This study therefore aimed to characterize and uncover the driving force of changes in water storage in the Indus based on GRACE and GRACE-FO solutions. A series of statistical techniques, such as EOF, modified STL, and Mann-Kenddall test, were applied to quantify and attribute the spatiotemporal patterns of the water storage dynamics. Our results demonstrated that (1) terrestrial water storage anomaly (TWSA) of the basin displayed a deficit and the deficit was largely concentrated in the middle and upper Indus plain (MUIP) during 2002 and 2020. (2) A slight decline in TWSA in the upper Indus basin (UIB) might be attributed to the accelerated melting of glacier and snow cover. (3) The excessive withdrawal of groundwater (1.57 mm/month) dominated the decrease of TWSA over the MUIP although weak increase of precipitation happened in the region. Anthropogenic activities imposed approximately 86.9% impact of the decrease in groundwater and this impact will aggravate for a long time if no effective water management schemes are taken. (4) Influenced by favorable meteorological conditions, the precipitation presented positive trend against the weakness of the India Summer Monsoon and the Westerlies, which exerted the positive influence on TWSA.</p>


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3385
Author(s):  
Ye Lyu ◽  
Yue Huang ◽  
Anming Bao ◽  
Ruisen Zhong ◽  
Han Yang

In this study, the Amu Darya river basin, Syr Darya river basin and Balkhash lake basin in Central Asia were selected as typical study areas. Temporal/spatial changes from 2002 to 2016 in the terrestrial water storage (TWS) and the groundwater storage (GWS) were analyzed, based on RL06 Mascon data from the Gravity Recovery and Climate Experiment (GRACE) satellite, and the sum of soil water content, snow water equivalent and canopy water data that were obtained from Global Land Data Assimilation System (GLDAS). Combing meteorological data and land use and cover change (LUCC) data, the joint impact of both human activities and climate change on the terrestrial water storage change (TWSC) and the groundwater storage change (GWSC) was evaluated by statistical analysis. The results revealed three findings: (1) The TWS retrieved by CSR (Center for Space Research) and the JPL (Jet Propulsion Laboratory) showed a decreasing trend in the three basins, and the variation of TWS showed a maximum surplus in spring (March–May) and a maximum deficit in autumn (September–November). (2) The decreasing rates of groundwater storage that were extracted, based on JPL and CSR Mascon data sets, were −2.17 mm/year and −3.90 mm/year, −3.72 mm/year and −4.96 mm/year, −1.74 mm/year and −3.36 mm/year in the Amu Darya river basin, Syr Darya river basin and Balkhash lake basin, respectively. (3) In the Amu Darya river basin, annual precipitation showed a decreasing trend, while the evapotranspiration rate showed an increasing trend due to an increasing temperature, and the TWS decreased from 2002 to 2016 in most areas of the basin. However, in the middle reaches of the Amu Darya river basin, the TWS increased due to the increase in cultivated land area, water income from flooded irrigation, and reservoir impoundment. In the upper reaches of the Syr Darya river basin, the increase in precipitation in alpine areas leads to an increase in glacier and snow meltwater, which is the reason for the increase in the TWS. In the middle and lower reaches of the Syr Darya river basin, the amount of evapotranspiration dissipation exceeds the amount of water replenished by agricultural irrigation, which leads to a decrease in TWS and GWS. The increase in precipitation in the northwest of the Balkhash lake basin, the increase in farmland irrigation water, and the topography (higher in the southeast and lower in the northwest) led to an increase in TWS and GWS in the northwest of the Balkhash lake basin. This study can provide useful information for water resources management in the inland river basins of Central Asia.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Kangning Sun ◽  
Litang Hu ◽  
Xin Liu ◽  
Wenjie Yin

Water resources in the Yongding River basin (YRB) are one of the important fundamental conditions in supporting regional water conservation and ecological development. However, the historical changes in water resources under recent human activities remain unknown due to very limited observation data. In this study, terrestrial water storage anomalies (TWSA) as well as multiple precipitation and actual evapotranspiration products from satellites were collected, and the accuracy of the data was verified by observed data or pairwise comparisons. The TWSA during 1980-2016 was reconstructed by using the water balance method, and the reconstructed TWSA was verified using GRACE-observed TWSA, the average depth to groundwater in the Beijing Plain from historical document records and the observed runoff from Guanting Reservoir. The reconstructed TWSA data indicated that the significant decrease occurred during 2000–2016 and the average rate of decreasing trend was -11 mm/year, which may have been caused by a decrease in groundwater storage due to agricultural development. However, the reconstructed TWSA decreased slightly during 1980-1999. The establishment of the water storage deficit index (WSDI) showed that there was no drought or mild drought during 1980-1999; however, the water resource shortage during 2000-2016 was more serious due to groundwater storage decreases caused by agricultural development. The WSDI was verified by using the commonly used self-calibrated Palmer drought severity index. The findings are valuable for sustainable water resource management in the YRB.


2017 ◽  
Vol 20 (5) ◽  
pp. 1180-1190 ◽  
Author(s):  
Pennan Chinnasamy ◽  
Revathi Ganapathy

Abstract Information on ongoing climate change impacts on water availability is limited for Asian regions, particularly for Peninsular Malaysia. Annual flash floods are common during peak monsoon seasons, while the dry seasons are hit by droughts, leading to socio-economic stress. This study, for the first time, analyzed the long-term trends (14 years, from 2002 to 2014) in terrestrial water storage and groundwater storage for Peninsular Malaysia, using Gravity Recovery And Climate Experiment data. Results indicate a decline in net terrestrial and groundwater storage over the last decade. Spatially, the northern regions are more affected by droughts, while the southern regions have more flash floods. Groundwater storage trends show strong correlations to the monsoon seasons, indicating that most of the shallow aquifer groundwater is used. Results also indicate that, with proper planning and management, excess monsoon/flash flood water can be stored in water storage structures up to the order of 87 billion liters per year. This can help in dry season water distribution and water transfer projects. Findings from this study can expand the understanding of ongoing climate change impacts on groundwater storage and terrestrial water storage, and can lead to better management of water resources in Peninsular Malaysia.


2010 ◽  
Vol 7 (4) ◽  
pp. 4501-4533 ◽  
Author(s):  
H. C. Bonsor ◽  
M. M. Mansour ◽  
A. M. MacDonald ◽  
A. G. Hughes ◽  
R. G. Hipkin ◽  
...  

Abstract. Assessing and quantifying natural water storage is becoming increasingly important as nations develop strategies for economic growth and adaptations measures for climate change. The Gravity Recovery and Climate Experiment (GRACE) data provide a new opportunity to gain a direct and independent measure of water mass variations on a regional scale. Hydrological models are required to interpret these mass variations and partition them between different parts of the hydrological cycle, but groundwater storage has generally been poorly constrained by such models. This study focused on the Nile basin, and used a groundwater recharge model ZOODRM (Zoomable Object Oriented Distributed Recharge Model) to help interpret the seasonal variation in terrestrial water storage indicated by GRACE. The recharge model was constructed using almost entirely remotely sensed input data and calibrated to observed hydrological data from the Nile. GRACE data for the Nile Basin indicates an annual terrestrial water storage of approximately 200 km3: water input is from rainfall, and much of this water is evaporated within the basin since average annual outflow of the Nile is less than 30 km3. Total annual recharge simulated by ZOODRM is 400 km3/yr; 0–50 mm/yr within the semi arid lower catchments, and a mean of 250 mm/yr in the sub-tropical upper catchments. These results are comparable to the few site specific studies of recharge in the basin. Accounting for year-round discharge of groundwater, the seasonal groundwater storage is 100–150 km3/yr and seasonal change in soil moisture, 30 km3/yr. Together, they account for between 50 and 90% of the annual water storage in the catchment. The annual water mass variation (200 km3/yr) is an order of magnitude smaller than the rainfall input into the catchment (2000 km3/yr), which could be consistent with a high degree of moisture recycling within the basin. Future work is required to advance the calibration of the ZOODRM model, particularly improving the timing of runoff routing.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Dostdar Hussain ◽  
Aftab Ahmed Khan ◽  
Syed Najam Ul Hassan ◽  
Syed Ali Asad Naqvi ◽  
Akhtar Jamil

AbstractMountains regions like Gilgit-Baltistan (GB) province of Pakistan are solely dependent on seasonal snow and glacier melt. In Indus basin which forms in GB, there is a need to manage water in a sustainable way for the livelihood and economic activities of the downstream population. It is important to monitor water resources that include glaciers, snow-covered area, lakes, etc., besides traditional hydrological (point-based measurements by using the gauging station) and remote sensing-based studies (traditional satellite-based observations provide terrestrial water storage (TWS) change within few centimeters from the earth’s surface); the TWS anomalies (TWSA) for the GB region are not investigated. In this study, the TWSA in GB region is considered for the period of 13 years (from January 2003 to December 2016). Gravity Recovery and Climate Experiment (GRACE) level 2 monthly data from three processing centers, namely Centre for Space Research (CSR), German Research Center for Geosciences (GFZ), and Jet Propulsion Laboratory (JPL), System Global Land Data Assimilation System (GLDAS)-driven Noah model, and in situ precipitation data from weather stations, were used for the study investigation. GRACE can help to forecast the possible trends of increasing or decreasing TWS with high accuracy as compared to the past studies, which do not use satellite gravity data. Our results indicate that TWS shows a decreasing trend estimated by GRACE (CSR, GFZ, and JPL) and GLDAS-Noah model, but the trend is not significant statistically. The annual amplitude of GLDAS-Noah is greater than GRACE signal. Mean monthly analysis of TWSA indicates that TWS reaches its maximum in April, while it reaches its minimum in October. Furthermore, Spearman’s rank correlation is determined between GRACE estimated TWS with precipitation, soil moisture (SM) and snow water equivalent (SWE). We also assess the factors, SM and SWE which are the most efficient parameters producing GRACE TWS signal in the study area. In future, our results with the support of more in situ data can be helpful for conservation of natural resources and to manage flood hazards, droughts, and water distribution for the mountain regions.


Sign in / Sign up

Export Citation Format

Share Document