scholarly journals Optimization of Landsat Chl-a Retrieval Algorithms in Freshwater Lakes through Classification of Optical Water Types

2021 ◽  
Vol 13 (22) ◽  
pp. 4607
Author(s):  
Michael A. Dallosch ◽  
Irena F. Creed

The application of remote sensing data to empirical models of inland surface water chlorophyll-a concentrations (chl-a) has been in development since the launch of the Landsat 4 satellite series in 1982. However, establishing an empirical model using a chl-a retrieval algorithm is difficult due to the spatial heterogeneity of inland lake water properties. Classification of optical water types (OWTs; i.e., differentially observed water spectra due to differences in water properties) has grown in favour in recent years over traditional non-turbid vs. turbid classifications. This study examined whether top-of-atmosphere reflectance observations in visible to near-infrared bands from Landsat 4, 5, 7, and 8 sensors can be used to identify unique OWTs using a guided unsupervised classification approach in which OWTs are defined through both remotely sensed reflectance and surface water chemistry data taken from samples in North American and Swedish lakes. Linear regressions of algorithms (Landsat reflectance bands, band ratios, products, or combinations) to lake surface water chl-a were built for each OWT. The performances of chl-a retrieval algorithms within each OWT were compared to those of global chl-a algorithms to test the effectiveness of OWT classification. Seven unique OWTs were identified and then fit into four categories with varying degrees of brightness as follows: turbid lakes with a low chl-a:turbidity ratio; turbid lakes with a mixture of high chl-a and turbidity measurements; oligotrophic or mesotrophic lakes with a mixture of low chl-a and turbidity measurements; and eutrophic lakes with a high chl-a:turbidity ratio. With one exception (r2 = 0.26, p = 0.08), the best performing algorithm in each OWT showed improvement (r2 = 0.69–0.91, p < 0.05), compared with the best performing algorithm for all lakes combined (r2 = 0.52, p < 0.05). Landsat reflectance can be used to extract OWTs in inland lakes to provide improved prediction of chl-a over large extents and long time series, giving researchers an opportunity to study the trophic states of unmonitored lakes.

2021 ◽  
Author(s):  
Long Vu Huu ◽  
Andreas Schenk ◽  
Stefan Hinz

&lt;p&gt;The multispectral mission of Sentinel-2 enables reliable, affordable and continuous environmental monitoring systems in fields like agriculture, biodiversity, environmental hazards and surface water. Several studies have proven that main water quality parameters like total suspended solids (TSS) and chlorophyll (Chl-a) can be estimated from multispectral data using different methods and algorithms. However, independently of the specific approach, these algorithms are selected and optimized to work primarily for one of the main water types i.e. open water, coastal water or inland water. This is also shown by the fact that there is not a single universal algorithm, which can be applied to all water types with consistent and reliable performance at the same time.&lt;/p&gt;&lt;p&gt;Ca Mau peninsula is a spacious area located in the southern part of the Mekong Delta, with an area of around 1.6 million hectares. This area has high growth rates of agricultural and aquaculture production, hence diverse water demands and water use types. In this study we use Sentinel-2 remote sensing data to monitor surface water quality using adaptive ML models to account for the different surface water types which occur in this area. Through using remote sensing data, we can provide a synoptic and sufficient view in spatial aspects about water quality parameters in the Ca Mau peninsula. Adapting the ML model will address the bio-optical model for a mixed water scenario.&lt;/p&gt;&lt;p&gt;The study is based on Sentinel-2 satellite images acquired in 2019 and 2020, supplemented by field data, i.e. hyperspectral measurements using close range observations, in-situ measurements and water samples, with the aim to collect a comprehensive reference data set as biophysical parameters are closely connected with spectral parameters at close range as well as at high spectral resolution. Therefore, surface hyperspectral measurement has been used to simulate Sentinel 2 multispectral image data at the respective bands.&lt;/p&gt;&lt;p&gt;We automatically assign the water type classes to observed surface water by integrating GIS data and remote sensing as the pre-processing step. For each class, the ML models are trained based on the experimental measurements with the multispectral and the simulated multispectral images on the respective water types. We devote special attention to water type boundaries to provide a smooth transition of estimated parameters.&lt;/p&gt;&lt;p&gt;The outputs of this model are surface water quality distribution maps with turbidity, TSS, and Chl-a parameters for all areas in Ca Mau peninsula, independent of the actual water type. Through the acceptable accuracy of model testing, the consolidation model will contribute water quality parameters that are crucial and meaningful to the planning and use of water for domestic use and production, besides, it also supports the decision-making of sustainable water use.&lt;/p&gt;


2020 ◽  
Author(s):  
Henk Eskes ◽  
Maarten Sneep ◽  
Jos van Geffen ◽  
Folkert Boersma ◽  
Ping Wang ◽  
...  

&lt;p&gt;Sentinel-5P, with the TROPOMI instrument, was launched in October 2017 and is providing unique high-quality and high-resolution (5 km) observations of trace gas pollutants with a daily global coverage. In our contribution we will discuss the retrieval of nitrogen dioxide (NO2). A major contributions to the total uncertainty of these measurements are the TROPOMI retrievals of cloud fraction and effective cloud pressure (or altitude). Several cloud retrieval algorithms have been implemented, deriving cloud height information from the near-infrared O2-A band, O2-B band or the O2-O2 absorption feature near 477nm. In our presentation we will show the importance of a consistent treatment of clouds and albedo as input for the retrieval radiative transfer calculations. The impact of the different cloud products on the retrieved NO2 is demonstrated for a new implementation of the FRESCO O2-A band cloud retrieval algorithm and an implementation of the O2-O2 retrievals for TROPOMI. A recipe to make optimal use of the available cloud information is presented.&lt;/p&gt;


2019 ◽  
Vol 11 (19) ◽  
pp. 2306 ◽  
Author(s):  
Chuiqing Zeng ◽  
Caren Binding

Red and near-infrared line-height algorithms such as the maximum chlorophyll index (MCI) are often considered optimal for remote sensing of chlorophyll-a (Chl-a) in turbid eutrophic waters, under the assumption of minimal influence from mineral sediments. This study investigated the impact of mineral turbidity on line-height algorithms using MCI as a primary example. Inherent optical properties from two turbid eutrophic lakes were used to simulate reflectance spectra. The simulated results: (1) confirmed a non-linear relationship between Chl-a and MCI; (2) suggested optimal use of the MCI at Chl-a < ~100 mg/m3 and saturation of the index at Chl-a ~300 mg/m3; (3) suggested significant variability in the MCI:Chl-a relationship due to mineral scattering, resulting in an RMSE in predicted Chl-a of ~23 mg/m3; and (4) revealed elevated Chl a retrievals and potential false positive algal bloom reports for sediment concentrations > 20 g/m3. A novel approach combining both MCI and its baseline slope, MCIslope reduced the RMSE to ~5 mg/m3. A quality flag based on MCIslope was proposed to mask erroneously high Chl-a retrievals and reduce the risk of false positive bloom reports in highly turbid waters. Observations suggest the approach may be valuable for all line-height-based Chl-a algorithms.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 196
Author(s):  
Araz Soltani Nazarloo ◽  
Vali Rasooli Sharabiani ◽  
Yousef Abbaspour Gilandeh ◽  
Ebrahim Taghinezhad ◽  
Mariusz Szymanek ◽  
...  

The purpose of this work was to investigate the detection of the pesticide residual (profenofos) in tomatoes by using visible/near-infrared spectroscopy. Therefore, the experiments were performed on 180 tomato samples with different percentages of profenofos pesticide (higher and lower values than the maximum residual limit (MRL)) as compared to the control (no pesticide). VIS/near infrared (NIR) spectral data from pesticide solution and non-pesticide tomato samples (used as control treatment) impregnated with different concentrations of pesticide in the range of 400 to 1050 nm were recorded by a spectrometer. For classification of tomatoes with pesticide content at lower and higher levels of MRL as healthy and unhealthy samples, we used different spectral pre-processing methods with partial least squares discriminant analysis (PLS-DA) models. The Smoothing Moving Average pre-processing method with the standard error of cross validation (SECV) = 4.2767 was selected as the best model for this study. In addition, in the calibration and prediction sets, the percentages of total correctly classified samples were 90 and 91.66%, respectively. Therefore, it can be concluded that reflective spectroscopy (VIS/NIR) can be used as a non-destructive, low-cost, and rapid technique to control the health of tomatoes impregnated with profenofos pesticide.


2020 ◽  
Vol 73 (3) ◽  
pp. 358-367
Author(s):  
Júlio Cezar Rebés Azambuja Filho ◽  
Paulo Cesar de Faccio Carvalho ◽  
Olivier Jean François Bonnet ◽  
Denis Bastianelli ◽  
Magali Jouven

Author(s):  
Nidhi Rajesh Mavani ◽  
Jarinah Mohd Ali ◽  
Suhaili Othman ◽  
M. A. Hussain ◽  
Haslaniza Hashim ◽  
...  

AbstractArtificial intelligence (AI) has embodied the recent technology in the food industry over the past few decades due to the rising of food demands in line with the increasing of the world population. The capability of the said intelligent systems in various tasks such as food quality determination, control tools, classification of food, and prediction purposes has intensified their demand in the food industry. Therefore, this paper reviews those diverse applications in comparing their advantages, limitations, and formulations as a guideline for selecting the most appropriate methods in enhancing future AI- and food industry–related developments. Furthermore, the integration of this system with other devices such as electronic nose, electronic tongue, computer vision system, and near infrared spectroscopy (NIR) is also emphasized, all of which will benefit both the industry players and consumers.


Sign in / Sign up

Export Citation Format

Share Document