scholarly journals Extraction and Discrimination of MBT Anomalies Possibly Associated with the Mw 7.3 Maduo (Qinghai, China) Earthquake on 21 May 2021

2021 ◽  
Vol 13 (22) ◽  
pp. 4726
Author(s):  
Yuan Qi ◽  
Lixin Wu ◽  
Yifan Ding ◽  
Yingjia Liu ◽  
Shuai Chen ◽  
...  

Earthquakes are one of the most threatening natural disasters to human beings, and pre- and post-earthquake microwave brightness temperature (MBT) anomalies have attracted increasing attention from geosciences as well as remote sensing communities. However, there is still a lack of systematic description about how to extract and then discriminate the authenticity of seismic MBT anomalies. In this research, the first strong earthquake occurring near the northern edge of eastern Bayan Har block in nearly 20 years, the recent Mw 7.3 Maduo earthquake in Qinghai province, China on 21 May 2021, was selected as a case study. Based on the monthly mean background of MBT, the spatiotemporal features of MBT residuals with 10.65 GHz before and after the earthquake was firstly revealed. Referring to the spatial patterns and abnormal amplitudes of the results, four typical types of evident MBT positive residuals were obtained, and the time series of intensity features of each category was also quantitatively analyzed. Then, as the most influential factor on surface microwave radiation, air temperature, soil moisture and precipitation were analyzed to discriminate their contributions to these residuals. The fourth one, which occurred north to the epicenter after the earthquake, was finally confirmed to be caused by soil moisture reduction and thus ruled out as being related to seismicity. Therefore, the three retained typical MBT residuals with 10.65 GHz could be identified as possible anomalies associated with the Maduo earthquake, and were further analyzed collaboratively with some other reported abnormal phenomena related to the seismogenic process. Furthermore, through time series analysis, the MBT positive residuals inside the Bayan Har block were found to be more significant than that outside, and the abnormal behaviors of MBT residuals in the elevation range of 4000–5000 m reflected the shielding effect on microwave radiation from thawing permafrost on the plateau in March and April, 2021. This research provides a detailed technique to extract and discriminate the seismic MBT anomaly, and the revealed results reflect well the joint effect of seismic activity and regional coversphere environment on satellite-observed MBT.

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1292
Author(s):  
Hongchun Zhu ◽  
Zhilin Zhang ◽  
Aifeng Lv

Evaluating the reliability of satellite-based and reanalysis soil moisture products is very important in soil moisture research. The traditional methods of evaluating soil moisture products rely on the verification of satellite inversion data and ground observation; however, the ground measurement data is often difficult to obtain. The triple collocation (TC) method can be used to evaluate the accuracy of a product without obtaining the ground measurement data. This study focused on the whole of Qinghai Province, China (31°–40° N, 89°–103° E), and used the TC method to obtain the error variance for satellite-based soil moisture data, the signal-to-noise ratio (SNR) of the same data, and the correlation between the same data and the ground-truth soil moisture, using passive satellite products: Soil Moisture Active Passive (SMAP), Soil Moisture Ocean Salinity (SMOS), Fengyun-3B Microwave Radiation Imager (FY3B), Fengyun-3C Microwave Radiation Imager (FY3C), and Advanced Microwave Scanning Radiometer 2 (AMSR2); an active satellite product Advanced Scatterometer (ASCAT), and reanalysis data Goddard Earth Observing System Model version 5 (GEOS-5) land modeling system. The TC results for the passive satellite data were then compared with the satellite-derived enhanced vegetation index (EVI) to explore the influence of vegetation coverage on the results. The following conclusions are drawn: (1) for the SMAP, SMOS, FY3B, FY3C, and AMSR2 satellite data, the spatial distributions of the TC-derived error variance, the SNR of the satellite-derived soil moisture, and the correlation coefficient between the satellite-derived and ground-truth soil moisture, were all relatively similar, which indirectly verified the reliability of the TC method; and (2) SMOS data have poor applicability for the estimation of soil moisture in Qinghai Province due to their insufficient detection capability in the Qaidam area, high error variance (median 0.0053), high SNR (median 0.43), and low correlation coefficient with ground-truth soil moisture (median 0.57).


2021 ◽  
Vol 13 (3) ◽  
pp. 67
Author(s):  
Eric Hitimana ◽  
Gaurav Bajpai ◽  
Richard Musabe ◽  
Louis Sibomana ◽  
Jayavel Kayalvizhi

Many countries worldwide face challenges in controlling building incidence prevention measures for fire disasters. The most critical issues are the localization, identification, detection of the room occupant. Internet of Things (IoT) along with machine learning proved the increase of the smartness of the building by providing real-time data acquisition using sensors and actuators for prediction mechanisms. This paper proposes the implementation of an IoT framework to capture indoor environmental parameters for occupancy multivariate time-series data. The application of the Long Short Term Memory (LSTM) Deep Learning algorithm is used to infer the knowledge of the presence of human beings. An experiment is conducted in an office room using multivariate time-series as predictors in the regression forecasting problem. The results obtained demonstrate that with the developed system it is possible to obtain, process, and store environmental information. The information collected was applied to the LSTM algorithm and compared with other machine learning algorithms. The compared algorithms are Support Vector Machine, Naïve Bayes Network, and Multilayer Perceptron Feed-Forward Network. The outcomes based on the parametric calibrations demonstrate that LSTM performs better in the context of the proposed application.


2021 ◽  
Author(s):  
Anna Balenzano ◽  
Giuseppe Satalino ◽  
Francesco Lovergine ◽  
Davide Palmisano ◽  
Francesco Mattia ◽  
...  

<p>One of the limitations of presently available Synthetic Aperture Radar (SAR) surface soil moisture (SSM) products is their moderated temporal resolution (e.g., 3-4 days) that is non optimal for several applications, as most user requirements point to a temporal resolution of 1-2 days or less. A possible path to tackle this issue is to coordinate multi-mission SAR acquisitions with a view to the future Copernicus Sentinel-1 (C&D and Next Generation) and L-band Radar Observation System for Europe (ROSE-L).</p><p>In this respect, the recent agreement between the Japanese (JAXA) and European (ESA) Space Agencies on the use of SAR Satellites in Earth Science and Applications provides a framework to develop and validate multi-frequency and multi-platform SAR SSM products. In 2019 and 2020, to support insights on the interoperability between C- and L-band SAR observations for SSM retrieval, Sentinel-1 and ALOS-2 systematic acquisitions over the TERENO (Terrestrial Environmental Observatories) Selhausen (Germany) and Apulian Tavoliere (Italy) cal/val sites were gathered. Both sites are well documented and equipped with hydrologic networks.</p><p>The objective of this study is to investigate the integration of multi-frequency SAR measurements for a consistent and harmonized SSM retrieval throughout the error characterization of a combined C- and L-band SSM product. To this scope, time series of Sentinel-1 IW and ALOS-2 FBD data acquired over the two sites will be analysed. The short time change detection (STCD) algorithm, developed, implemented and recently assessed on Sentinel-1 data [e.g., Balenzano et al., 2020; Mattia et al., 2020], will be tailored to the ALOS-2 data. Then, the time series of SAR SSM maps from each SAR system will be derived separately and aggregated in an interleaved SSM product. Furthermore, it will be compared against in situ SSM data systematically acquired by the ground stations deployed at both sites. The study will assess the interleaved SSM product and evaluate the homogeneous quality of C- and L-band SAR SSM maps.</p><p> </p><p> </p><p>References</p><p>Balenzano. A., et al., “Sentinel-1 soil moisture at 1km resolution: a validation study”, submitted to Remote Sensing of Environment (2020).</p><p>Mattia, F., A. Balenzano, G. Satalino, F. Lovergine, A. Loew, et al., “ESA SEOM Land project on Exploitation of Sentinel-1 for Surface Soil Moisture Retrieval at High Resolution,” final report, contract number 4000118762/16/I-NB, 2020.</p>


2021 ◽  
Vol 11 (2) ◽  
pp. 81-96
Author(s):  
Pham Minh ◽  
Dang Thao Yen ◽  
Ngo Thi Huong Quynh ◽  
Hoang Thi Hong Yen ◽  
Tran Thi Thanh Nga ◽  
...  

Today, the development of the Internet and social networks has changed the lives of human beings. The ability of these technologies to connect people in real-time expands the influence of some people in the community. Therefore, this study is conducted to test whether customers change purchasing behavior in online environments under the impact of those influencers by using Technology Acceptance Model (TAM). The study conducted a survey of 503 Vietnameses on Google Form from November 2020 to mid-January 2021. The collected data were analyzed using AMOS 24 with CB-SEM analysis method. The results showed a positive relationship between influencers and customers’ online purchasing behavior. More specifically, customers are more likely to buy online if they trust influencers and their advertisements. This is the most influential factor among the three influencer traits (as source credibility): trustworthiness, expertise, and attractiveness. A remarkable point in this study is that Vietnamese people are more concerned with perceived ease of use when buying online than other factors in the TAM model. This is the basis for businesses to implement influencer marketing strategies and improve the competitiveness of their online business.


2014 ◽  
Vol 18 (4) ◽  
pp. 1475-1492 ◽  
Author(s):  
J. Niu ◽  
J. Chen ◽  
B. Sivakumar

Abstract. This study explores the teleconnection of two climatic patterns, namely the El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), with hydrological processes over the Pearl River basin in southern China, particularly on a sub-basin-scale basis. The Variable Infiltration Capacity (VIC) model is used to simulate the daily hydrological processes over the basin for the study period 1952–2000, and then, using the simulation results, the time series of the monthly runoff and soil moisture anomalies for its ten sub-basins are aggregated. Wavelet analysis is performed to explore the variability properties of these time series at 49 timescales ranging from 2 months to 9 yr. Use of the wavelet coherence and rank correlation method reveals that the dominant variabilities of the time series of runoff and soil moisture are basically correlated with IOD. The influences of ENSO on the terrestrial hydrological processes are mainly found in the eastern sub-basins. The teleconnections between climatic patterns and hydrological variability also serve as a reference for inferences on the occurrence of extreme hydrological events (e.g., floods and droughts).


2018 ◽  
Vol 10 (10) ◽  
pp. 1577 ◽  
Author(s):  
Chao Wang ◽  
Zhengjia Zhang ◽  
Simonetta Paloscia ◽  
Hong Zhang ◽  
Fan Wu ◽  
...  

Global change has significant impact on permafrost region in the Tibet Plateau. Soil moisture (SM) of permafrost is one of the most important factors influencing the energy flux, ecosystem, and hydrologic process. The objectives of this paper are to retrieve the permafrost SM using time-series SAR images, without the need of auxiliary survey data, and reveal its variation patterns. After analyzing the characteristics of time-series radar backscattering coefficients of different landcover types, a two-component SM retrieval model is proposed. For the alpine meadow area, a linear retrieving model is proposed using the TerraSAR-X time-series images based on the assumption that the lowest backscattering coefficient is measured when the soil moisture is at its wilting point and the highest backscattering coefficient represents the water-saturated soil state. For the alpine desert area, the surface roughness contribution is eliminated using the dual SAR images acquired in the winter season with different incidence angles when retrieving soil moisture from the radar signal. Before the model implementation, landcover types are classified based on their backscattering features. 22 TerraSAR-X images are used to derive the soil moisture in Beiluhe, Northern Tibet with different incidence angles. The results obtained from the proposed method have been validated using in-situ soil moisture measurements, thus obtaining RMSE and Bias of 0.062 cm3/cm3 and 4.7%, respectively. The retrieved time-series SM maps of the study area point out the spatial and temporal SM variation patterns of various landcover types.


2014 ◽  
Vol 52 (1) ◽  
pp. 393-405 ◽  
Author(s):  
Delphine J. Leroux ◽  
Yann H. Kerr ◽  
Eric F. Wood ◽  
Alok K. Sahoo ◽  
Rajat Bindlish ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document