scholarly journals Application of Deep Learning Architectures for Satellite Image Time Series Prediction: A Review

2021 ◽  
Vol 13 (23) ◽  
pp. 4822
Author(s):  
Waytehad Rose Moskolaï ◽  
Wahabou Abdou ◽  
Albert Dipanda ◽  
Kolyang

Satellite image time series (SITS) is a sequence of satellite images that record a given area at several consecutive times. The aim of such sequences is to use not only spatial information but also the temporal dimension of the data, which is used for multiple real-world applications, such as classification, segmentation, anomaly detection, and prediction. Several traditional machine learning algorithms have been developed and successfully applied to time series for predictions. However, these methods have limitations in some situations, thus deep learning (DL) techniques have been introduced to achieve the best performance. Reviews of machine learning and DL methods for time series prediction problems have been conducted in previous studies. However, to the best of our knowledge, none of these surveys have addressed the specific case of works using DL techniques and satellite images as datasets for predictions. Therefore, this paper concentrates on the DL applications for SITS prediction, giving an overview of the main elements used to design and evaluate the predictive models, namely the architectures, data, optimization functions, and evaluation metrics. The reviewed DL-based models are divided into three categories, namely recurrent neural network-based models, hybrid models, and feed-forward-based models (convolutional neural networks and multi-layer perceptron). The main characteristics of satellite images and the major existing applications in the field of SITS prediction are also presented in this article. These applications include weather forecasting, precipitation nowcasting, spatio-temporal analysis, and missing data reconstruction. Finally, current limitations and proposed workable solutions related to the use of DL for SITS prediction are also highlighted.

2021 ◽  
Vol 13 (3) ◽  
pp. 67
Author(s):  
Eric Hitimana ◽  
Gaurav Bajpai ◽  
Richard Musabe ◽  
Louis Sibomana ◽  
Jayavel Kayalvizhi

Many countries worldwide face challenges in controlling building incidence prevention measures for fire disasters. The most critical issues are the localization, identification, detection of the room occupant. Internet of Things (IoT) along with machine learning proved the increase of the smartness of the building by providing real-time data acquisition using sensors and actuators for prediction mechanisms. This paper proposes the implementation of an IoT framework to capture indoor environmental parameters for occupancy multivariate time-series data. The application of the Long Short Term Memory (LSTM) Deep Learning algorithm is used to infer the knowledge of the presence of human beings. An experiment is conducted in an office room using multivariate time-series as predictors in the regression forecasting problem. The results obtained demonstrate that with the developed system it is possible to obtain, process, and store environmental information. The information collected was applied to the LSTM algorithm and compared with other machine learning algorithms. The compared algorithms are Support Vector Machine, Naïve Bayes Network, and Multilayer Perceptron Feed-Forward Network. The outcomes based on the parametric calibrations demonstrate that LSTM performs better in the context of the proposed application.


2021 ◽  
Author(s):  
Alessio Cislaghi ◽  
Paolo Fogliata ◽  
Emanuele Morlotti ◽  
Gian Battista Bischetti

<p>River channels and floodplains have been highly modified over the last 70 years to mitigate flood risk and to gain lands for agricultural activities, settlements and soft infrastructures (e.g., cycle paths). River engineering measures simplified the geomorphologic complexity of river system, usually from braided or wandering channels to highly-confined single-thread channel. Meanwhile, rivers naturally adjust and self-organise the geomorphologic function as response of all the disturbances (e.g., flood events, river-bed degradation, narrowing, control works) altering sediment and water transfer, exacerbating bank erosion processes and streambank failures, and exposing bare sediment that can be subsequently colonized by pioneer species. In this context, river management has to address river dynamics planning sustainable practices with the aim to combine hydraulic safety, river functionality, and ecological/environmental quality. These actions require the detection of river processes by monitoring the geomorphological changes over time, both over the active riverbank and the close floodplains. Thus, remote sensing technology combined with machine learning algorithms offers a viable decision-making instrument (Piégay et al., 2020).</p><p>This study proposes a procedure that consists in applying image segmentation and classification algorithms (i.e., Random Forest and dendrogram-based method) over time-series high resolution RGB-NIR satellite-images, to identify the fluvial forms (bars and islands), the vegetation patches and the active riverbed. The study focuses on three different reaches of Oglio River (Valcamonica, North Italy), representative of the most common geomorphic changes in Alpine rivers.</p><p>The results clearly show the temporal evolution/dynamics of vegetated and non-vegetated bars and islands, as consequence of human and natural disturbances (flood events, riparian vegetation clear-cutting, and bank-protection works). Moreover, the procedure allows to distinguish two stages of riparian vegetation (i.e., pioneer and mature vegetated areas) and to quantify the timing of colonization and growth. Finally, the study proposes a practical application of the described methodology for river managers indicating which river management activity (including timing, intensity and economic costs) is more appropriate and sustainable for each studied reach.</p><p> </p><p>References: Piégay, H., Arnaud, F., Belletti, B., Bertrand, M., Bizzi, S., Carbonneau, P., Dufour, S., Liébault, F., Ruiz‐Villanueva, V. and Slater, L.: Remotely sensed rivers in the Anthropocene: state of the art and prospects, Earth Surf. Process. Landf., 45(1), 157–188, https://doi.org/10.1002/esp.4787, 2020.</p>


2021 ◽  
Vol 73 (4) ◽  
pp. 1036-1047
Author(s):  
Felipe Menino Carlos ◽  
Vitor Conrado Faria Gomes ◽  
Gilberto Ribeiro de Queiroz ◽  
Felipe Carvalho de Souza ◽  
Karine Reis Ferreira ◽  
...  

The potential to perform spatiotemporal analysis of the Earth's surface, fostered by a large amount of Earth Observation (EO) open data provided by space agencies, brings new perspectives to create innovative applications. Nevertheless, these big datasets pose some challenges regarding storage and analytical processing capabilities. The organization of these datasets as multidimensional data cubes represents the state-of-the-art in analysis-ready data regarding information extraction. EO data cubes can be defined as a set of time-series images associated with spatially aligned pixels along the temporal dimension. Some key technologies have been developed to take advantage of the data cube power. The Open Data Cube (ODC) framework and the Brazil Data Cube (BDC) platform provide capabilities to access and analyze EO data cubes. This paper introduces two new tools to facilitate the creation of land use and land over (LULC) maps using EO data cubes and Machine Learning techniques, and both built on top of ODC and BDC technologies. The first tool is a module that extends the ODC framework capabilities to lower the barriers to use Machine Learning (ML) algorithms with EO data. The second tool relies on integrating the R package named Satellite Image Time Series (sits) with ODC to enable the use of the data managed by the framework. Finally, water mask classification and LULC mapping applications are presented to demonstrate the processing capabilities of the tools.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1672
Author(s):  
Sebastian Raubitzek ◽  
Thomas Neubauer

Measures of signal complexity, such as the Hurst exponent, the fractal dimension, and the Spectrum of Lyapunov exponents, are used in time series analysis to give estimates on persistency, anti-persistency, fluctuations and predictability of the data under study. They have proven beneficial when doing time series prediction using machine and deep learning and tell what features may be relevant for predicting time-series and establishing complexity features. Further, the performance of machine learning approaches can be improved, taking into account the complexity of the data under study, e.g., adapting the employed algorithm to the inherent long-term memory of the data. In this article, we provide a review of complexity and entropy measures in combination with machine learning approaches. We give a comprehensive review of relevant publications, suggesting the use of fractal or complexity-measure concepts to improve existing machine or deep learning approaches. Additionally, we evaluate applications of these concepts and examine if they can be helpful in predicting and analyzing time series using machine and deep learning. Finally, we give a list of a total of six ways to combine machine learning and measures of signal complexity as found in the literature.


Author(s):  
Bao-fei Feng ◽  
Yin-shan Xu ◽  
Tao Zhang ◽  
Xiao Zhang

Abstract In general, accurate hydrological time series prediction information is of great significance for the rational planning and management of water resource system. Extreme learning machine (ELM) is an effective tool proposed for the single-layer feedforward neural network in the regression and classification problems. However, the standard ELM model falls into local minimum with a high probability in hydrological prediction problems since the randomly assigned parameters (like input-hidden weights and hidden biases) often remain unchanged at the learning process. For effectively improving the prediction accuracy, this paper develops a hybrid hydrological forecasting model where the emerging sparrow search algorithm (SSA) is firstly used to determine the satisfying parameter combinations of the ELM model, and then the Moore-Penrose generalized inverse method is chosen to analytically obtain the weight matrix between the hidden layer and output layer. The proposed method is used to forecast the long-term daily runoff series collected from three real-world hydrological stations in China. Based on several performance evaluation indexes, the results show that the proposed method outperforms several ELM variants optimized by other evolutionary algorithms in both training and testing phases. Hence, an effective evolutionary machine learning tool is developed for accurate hydrological time series forecasting. HIGHLIGHT Hydrologic forecasting, sparrow search algorithm, extreme machine learning.


2021 ◽  
Author(s):  
Mostafa Kiani Shahvandi ◽  
Benedikt Soja

<p>Graph neural networks are a newly established category of machine learning algorithms dealing with relational data. They can be used for the analysis of both spatial and/or temporal data. They are capable of modeling how time series of nodes, which are located at different spatial positions, change by the exchange of information between nodes and their neighbors. As a result, time series can be predicted to future epochs.</p><p>GNSS networks consist of stations at different locations, each producing time series of geodetic parameters, such as changes in their positions. In order to successfully apply graph neural networks to predict time series from GNSS networks, the physical properties of GNSS time series should be taken into account. Thus, we suggest a new graph neural network algorithm that has both a physical and a mathematical basis. The physical part is based on the fundamental concept of information exchange between nodes and their neighbors. Here, the temporal correlation between the changes of time series of the nodes and their neighbors is considered, which is computed by geophysical loading and/or climatic data. The mathematical part comes from the time series prediction by mathematical models, after the removal of trends and periodic effects using the singular spectrum analysis algorithm. In addition, it plays a role in the computation of the impact of neighboring nodes, based on the spatial correlation computed according to the pair-wise node-neighbor distance. The final prediction is the simple weighted summation of the predicted values of the time series of the node and those of its neighbors, in which weights are the multiplication of the spatial and temporal correlations.</p><p>In order to show the efficiency of the proposed algorithm, we considered a global network of more than 18000 GNSS stations and defined the neighbors of each node as stations that are located within the range of 10 km. We performed several different analyses, including the comparison between different machine learning algorithms and statistical methods for the time series prediction part, the impact of the type of data used for the computation of temporal correlation (climatic and/or geophysical loading), and comparison with other state-of-the-art graph neural network algorithms. We demonstrate the superiority of our method to the current graph neural network algorithms when applied to time series of geodetic networks. In addition, we show that the best machine learning algorithm to use within our graph neural network architecture is the multilayer perceptron, which shows an average of 0.34 mm in prediction accuracy. Furthermore, we find that the statistical methods have lower accuracies than machine learning ones, as much as 44 percent.</p>


2020 ◽  
Vol 12 (3) ◽  
pp. 449 ◽  
Author(s):  
Henrique G. Momm ◽  
Racha ElKadiri ◽  
Wesley Porter

Long-term temporal and spatial information of crop type supports a wide range of applications including hydrological and climatological studies. In the U.S., yearly crop data layers (CDLs) are available starting in the early 2000s and have been developed using combined field information and sets of temporal imagery from multiple sensors. Development of long-term crop-type layers similar to CDLs is restricted by reduced accessibility to imagery and the necessary auxiliary datasets. In this study, a procedure to generate a historical crop type was developed and evaluated. Time series of Normalized Difference Vegetation Index (NDVI) datasets from Landsat 5 TM sensor for the Lower Bear Creek watershed were collected and processed. Object-based pseudo phenology curves, represented by the NDVI time series, were generated using noise filtering and dimensionality standardization procedures for the years 1985, 1990, 1995, 2000, and 2005. Classifiers were developed and evaluated using random-forest machine learning algorithms and CDL datasets as the reference. Increased generalization performance was obtained when the model was developed using multi-year datasets. This can be attributed to improved crop type representation during the training phase coupled with characterization of yearly variations due to natural (weather) and anthropogenic factors (farming management). Source of uncertainties were the presence of multiple crops within objects, phenological similarities between soybean and corn/maize, and the accuracy of CDL itself. The proposed procedure supports the development of historic crop types for long-term studies at the field scale in agricultural watersheds.


TEM Journal ◽  
2021 ◽  
pp. 1955-1963
Author(s):  
Ajla Kulaglic ◽  
B. Berk Ustundag

Multivariable machine learning (ML) models are increasingly used for time series predictions. However, avoiding the overfitting and underfitting in ML-based time series prediction requires special consideration depending on the size and characteristics of the available training dataset. Predictive error compensating wavelet neural network (PEC-WNN) improves the time series prediction accuracy by enhancing the orthogonal features within a data fusion scheme. In this study, time series prediction performance of the PEC-WNNs have been evaluated on two different problems in comparison to conventional machine learning methods including the long short-term memory (LSTM) network. The results have shown that PECNET provides significantly more accurate predictions. RMSPE error is reduced by more than 60% with respect to other compared ML methods for Lorenz Attractor and wind speed prediction problems.


2021 ◽  
Vol 5 (4) ◽  
pp. 175
Author(s):  
Ahmed I. Shahin ◽  
Sultan Almotairi

The COVID-19 pandemic has widely spread with an increasing infection rate through more than 200 countries. The governments of the world need to record the confirmed infectious, recovered, and death cases for the present state and predict the cases. In favor of future case prediction, governments can impose opening and closing procedures to save human lives by slowing down the pandemic progression spread. There are several forecasting models for pandemic time series based on statistical processing and machine learning algorithms. Deep learning has been proven as an excellent tool for time series forecasting problems. This paper proposes a deep learning time-series prediction model to forecast the confirmed, recovered, and death cases. Our proposed network is based on an encoding–decoding deep learning network. Moreover, we optimize the selection of our proposed network hyper-parameters. Our proposed forecasting model was applied in Saudi Arabia. Then, we applied the proposed model to other countries. Our study covers two categories of countries that have witnessed different spread waves this year. During our experiments, we compared our proposed model and the other time-series forecasting models, which totaled fifteen prediction models: three statistical models, three deep learning models, seven machine learning models, and one prophet model. Our proposed forecasting model accuracy was assessed using several statistical evaluation criteria. It achieved the lowest error values and achieved the highest R-squared value of 0.99. Our proposed model may help policymakers to improve the pandemic spread control, and our method can be generalized for other time series forecasting tasks.


Sign in / Sign up

Export Citation Format

Share Document