scholarly journals An Azimuth Signal-Reconstruction Method Based on Two-Step Projection Technology for Spaceborne Azimuth Multi-Channel High-Resolution and Wide-Swath SAR

2021 ◽  
Vol 13 (24) ◽  
pp. 4988
Author(s):  
Ning Li ◽  
Hanqing Zhang ◽  
Jianhui Zhao ◽  
Lin Wu ◽  
Zhengwei Guo

Azimuth non-uniform signal-reconstruction is a critical step for azimuth multi-channel high-resolution wide-swath (HRWS) synthetic aperture radar (SAR) data processing. However, the received non-uniform signal has noise in the actual azimuth multi-channel SAR (MCSAR) operation, which leads to the serious reduction in the signal-to-noise ratio (SNR) of the results processed by a traditional reconstruction algorithm. Aiming to address the problem of reducing the SNR of the traditional reconstruction algorithm in the reconstruction of non-uniform signal with noise, a novel signal-reconstruction algorithm based on two-step projection technology (TSPT) for the MCSAR system is proposed in this paper. The key part of the TSPT algorithm consists of a two-step projection. The first projection is to project the given signal into the selected intermediate subspace, spanned by the integer conversion of the compact support kernel function. This process generates a set of sparse equations, which can be solved efficiently by using the sparse equation solver. The second key projection is to project the first projection result into the subspace of the known sampled signal. The secondary projection can be achieved with a digital linear translation invariant (LSI) filter and generate a uniformly spaced signal. As a result, compared with the traditional azimuth MCSAR signal-reconstruction algorithm, the proposed algorithm can improve SNR and reduce the azimuth ambiguity-signal-ratio (AASR). The processing results of simulated data and real raw data verify the effectiveness of the proposed algorithm.

2021 ◽  
Vol 13 (10) ◽  
pp. 1907
Author(s):  
Pengfei Zhao ◽  
Yunkai Deng ◽  
Wei Wang ◽  
Yongwei Zhang ◽  
Robert Wang

Hybrid and ±π/4 quadrature-polarimetric (quad-pol) synthetic aperture radar (SAR) systems operating from space can obtain all polarimetric components simultaneously but suffer from severe azimuth ambiguities in the cross-polarized (cross-pol) measurement channels. In this paper, the hybrid and ±π/4 quad-pol SAR systems with multiple receive channels in azimuth are widely investigated to suppress the azimuth ambiguities of the cross-pol components. We first provide a more thorough analysis of the multichannel hybrid and ±π/4 quad-pol SAR systems. Then, the multichannel signal processing is briefly discussed for the reconstruction of the quad-pol SAR signal from the aliased signals, in which the conventional reconstruction algorithm causes extremely severe azimuth ambiguities. To this end, an improved reconstruction method is proposed based on a joint optimization, which allows for the minimization of ambiguities from the desired polarization and the simultaneous power of undesired polarized signal. This method can largely suppress azimuth ambiguities compared with the conventional reconstruction algorithm. Finally, to verify the advantages and effectiveness of the proposed approach, the azimuth ambiguity-to-signal ratio (AASR), the range ambiguity-to-signal ratio (RASR) and signal-to-noise ratio (SNR) of all polarizations, as well as a set of imaging simulation results, are given to describe the effects of reconstruction on the multichannel hybrid and ±π/4 quad-pol SAR systems.


Author(s):  
Jingwen Wang ◽  
Xu Wang ◽  
Dan Yang ◽  
Kaiyang Wang

Background: Image reconstruction of magnetic induction tomography (MIT) is a typical ill-posed inverse problem, which means that the measurements are always far from enough. Thus, MIT image reconstruction results using conventional algorithms such as linear back projection and Landweber often suffer from limitations such as low resolution and blurred edges. Methods: In this paper, based on the recent finite rate of innovation (FRI) framework, a novel image reconstruction method with MIT system is presented. Results: This is achieved through modeling and sampling the MIT signals in FRI framework, resulting in a few new measurements, namely, fourier coefficients. Because each new measurement contains all the pixel position and conductivity information of the dense phase medium, the illposed inverse problem can be improved, by rebuilding the MIT measurement equation with the measurement voltage and the new measurements. Finally, a sparsity-based signal reconstruction algorithm is presented to reconstruct the original MIT image signal, by solving this new measurement equation. Conclusion: Experiments show that the proposed method has better indicators such as image error and correlation coefficient. Therefore, it is a kind of MIT image reconstruction method with high accuracy.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. G83-G92
Author(s):  
Ya Xu ◽  
Fangzhou Nan ◽  
Weiping Cao ◽  
Song Huang ◽  
Tianyao Hao

Irregular sampled gravity data are often interpolated into regular grid data for convenience of data processing and interpretation. The compressed sensing theory provides a signal reconstruction method that can recover a sparse signal from far fewer samples. We have introduced a gravity data reconstruction method based on the nonequispaced Fourier transform (NFT) in the framework of compressed sensing theory. We have developed a sparsity analysis and a reconstruction algorithm with an iterative cooling thresholding method and applied to the gravity data of the Bishop model. For 2D data reconstruction, we use two methods to build the weighting factors: the Gaussian function and the Voronoi method. Both have good reconstruction results from the 2D data tests. The 2D reconstruction tests from different sampling rates and comparison with the minimum curvature and the kriging methods indicate that the reconstruction method based on the NFT has a good reconstruction result even with few sampling data.


2021 ◽  
Vol 13 (21) ◽  
pp. 4354
Author(s):  
Wei Xu ◽  
Qi Yu ◽  
Chonghua Fang ◽  
Pingping Huang ◽  
Weixian Tan ◽  
...  

Scan-on-receive (SCORE) digital beamforming (DBF) in elevation can significantly improve the signal-to-noise ratio (SNR) and suppress range ambiguities in spaceborne synthetic aperture radar (SAR). It has been identified as one of the important methods to obtain high-resolution wide-swath (HRWS) SAR images. However, with the improvement of geometric resolution and swath width, the residual pulse extension loss (PEL) due to the long pulse duration in the conventional spaceborne onboard DBF processor must be considered and reduced. In this paper, according to the imaging geometry of the spaceborne DBF SAR system, the reason for the large attenuation of the receiving gain at the edge of the wide swath is analyzed, and two improved onboard DBF methods to mitigate the receive gain loss are given and analyzed. Taking account of both the advantages and drawbacks of the two improved DBF methods presented, a novel onboard DBF processor with multi-frequency and multi-group time delays in HRWS SAR is proposed. Compared with the DBF processor only with multi-group time delays, the downlink data rate was clearly reduced, while focusing performance degradation due to phase and amplitude errors between different frequency bands could be mitigated compared with the DBF processor only with multi-frequency time delays. The simulation results of both point and distributed targets validate the proposed DBF processor.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jianfang Cao ◽  
Zibang Zhang ◽  
Aidi Zhao

Considering the problems of low resolution and rough details in existing mural images, this paper proposes a superresolution reconstruction algorithm for enhancing artistic mural images, thereby optimizing mural images. The algorithm takes a generative adversarial network (GAN) as the framework. First, a convolutional neural network (CNN) is used to extract image feature information, and then, the features are mapped to the high-resolution image space of the same size as the original image. Finally, the reconstructed high-resolution image is output to complete the design of the generative network. Then, a CNN with deep and residual modules is used for image feature extraction to determine whether the output of the generative network is an authentic, high-resolution mural image. In detail, the depth of the network increases, the residual module is introduced, the batch standardization of the network convolution layer is deleted, and the subpixel convolution is used to realize upsampling. Additionally, a combination of multiple loss functions and staged construction of the network model is adopted to further optimize the mural image. A mural dataset is set up by the current team. Compared with several existing image superresolution algorithms, the peak signal-to-noise ratio (PSNR) of the proposed algorithm increases by an average of 1.2–3.3 dB and the structural similarity (SSIM) increases by 0.04 = 0.13; it is also superior to other algorithms in terms of subjective scoring. The proposed method in this study is effective in the superresolution reconstruction of mural images, which contributes to the further optimization of ancient mural images.


2011 ◽  
Vol 2011 ◽  
pp. 1-10
Author(s):  
Yijiu Zhao ◽  
Xiaoyan Zhuang ◽  
Zhijian Dai ◽  
Houjun Wang

This paper suggests an upside-down tree-based orthogonal matching pursuit (UDT-OMP) compressive sampling signal reconstruction method in wavelet domain. An upside-down tree for the wavelet coefficients of signal is constructed, and an improved version of orthogonal matching pursuit is presented. The proposed algorithm reconstructs compressive sampling signal by exploiting the upside-down tree structure of the wavelet coefficients of signal besides its sparsity in wavelet basis. Compared with conventional greedy pursuit algorithms: orthogonal matching pursuit (OMP) and tree-based orthogonal matching pursuit (TOMP), signal-to-noise ratio (SNR) using UDT-OMP is significantly improved.


2018 ◽  
Vol 27 (09) ◽  
pp. 1850140
Author(s):  
Shan Luo ◽  
Guoan Bi ◽  
Tong Wu ◽  
Yong Xiao ◽  
Rongping Lin

One of the main challenges in signal denoising is to accurately restore useful signals in low signal-to-noise ratio (SNR) scenarios. In this paper, we investigate the signal denoising problem for multi-component linear frequency modulated (LFM) signals. An effective time-frequency (TF) analysis-based approach is proposed. Compared to the existing approaches, our proposed one can further increase the noise suppressing performance and improve the quality of the reconstructed signal. Experimental results are presented to show that the proposed denoising approach is able to effectively separate the multi-component LFM signal from the strong noise environments.


Sign in / Sign up

Export Citation Format

Share Document