scholarly journals DSMNN-Net: A Deep Siamese Morphological Neural Network Model for Burned Area Mapping Using Multispectral Sentinel-2 and Hyperspectral PRISMA Images

2021 ◽  
Vol 13 (24) ◽  
pp. 5138
Author(s):  
Seyd Teymoor Seydi ◽  
Mahdi Hasanlou ◽  
Jocelyn Chanussot

Wildfires are one of the most destructive natural disasters that can affect our environment, with significant effects also on wildlife. Recently, climate change and human activities have resulted in higher frequencies of wildfires throughout the world. Timely and accurate detection of the burned areas can help to make decisions for their management. Remote sensing satellite imagery can have a key role in mapping burned areas due to its wide coverage, high-resolution data collection, and low capture times. However, although many studies have reported on burned area mapping based on remote sensing imagery in recent decades, accurate burned area mapping remains a major challenge due to the complexity of the background and the diversity of the burned areas. This paper presents a novel framework for burned area mapping based on Deep Siamese Morphological Neural Network (DSMNN-Net) and heterogeneous datasets. The DSMNN-Net framework is based on change detection through proposing a pre/post-fire method that is compatible with heterogeneous remote sensing datasets. The proposed network combines multiscale convolution layers and morphological layers (erosion and dilation) to generate deep features. To evaluate the performance of the method proposed here, two case study areas in Australian forests were selected. The framework used can better detect burned areas compared to other state-of-the-art burned area mapping procedures, with a performance of >98% for overall accuracy index, and a kappa coefficient of >0.9, using multispectral Sentinel-2 and hyperspectral PRISMA image datasets. The analyses of the two datasets illustrate that the DSMNN-Net is sufficiently valid and robust for burned area mapping, and especially for complex areas.

2021 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Fattah Hatami Maskouni ◽  
Seyd Teymoor Seydi

Forest areas are profoundly important to the planet, since they offer considerable advantages. The mapping and estimation of burned areas covered with trees are critical during decision making processes. In such cases, remote sensing can be of great help. This paper presents a method to estimate burned areas based on the Sentinel-2 imagery using a convolutional neural network (CNN) algorithm. The framework touches change detection using pre- and post-fire datasets. The proposed framework utilizes a multi-scale convolution block to extract deep features. We investigate the performance of the proposed method via visual and numerical analyses. The case study for this research is Golestan Forest, which is located in the north of Iran. The results of the burned area detection process show that the proposed method produces a performance accuracy rate of more than 97% in terms of overall accuracy, with a Kappa score greater than 0.933.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3982
Author(s):  
Giacomo Lazzeri ◽  
William Frodella ◽  
Guglielmo Rossi ◽  
Sandro Moretti

Wildfires have affected global forests and the Mediterranean area with increasing recurrency and intensity in the last years, with climate change resulting in reduced precipitations and higher temperatures. To assess the impact of wildfires on the environment, burned area mapping has become progressively more relevant. Initially carried out via field sketches, the advent of satellite remote sensing opened new possibilities, reducing the cost uncertainty and safety of the previous techniques. In the present study an experimental methodology was adopted to test the potential of advanced remote sensing techniques such as multispectral Sentinel-2, PRISMA hyperspectral satellite, and UAV (unmanned aerial vehicle) remotely-sensed data for the multitemporal mapping of burned areas by soil–vegetation recovery analysis in two test sites in Portugal and Italy. In case study one, innovative multiplatform data classification was performed with the correlation between Sentinel-2 RBR (relativized burn ratio) fire severity classes and the scene hyperspectral signature, performed with a pixel-by-pixel comparison leading to a converging classification. In the adopted methodology, RBR burned area analysis and vegetation recovery was tested for accordance with biophysical vegetation parameters (LAI, fCover, and fAPAR). In case study two, a UAV-sensed NDVI index was adopted for high-resolution mapping data collection. At a large scale, the Sentinel-2 RBR index proved to be efficient for burned area analysis, from both fire severity and vegetation recovery phenomena perspectives. Despite the elapsed time between the event and the acquisition, PRISMA hyperspectral converging classification based on Sentinel-2 was able to detect and discriminate different spectral signatures corresponding to different fire severity classes. At a slope scale, the UAV platform proved to be an effective tool for mapping and characterizing the burned area, giving clear advantage with respect to filed GPS mapping. Results highlighted that UAV platforms, if equipped with a hyperspectral sensor and used in a synergistic approach with PRISMA, would create a useful tool for satellite acquired data scene classification, allowing for the acquisition of a ground truth.


2019 ◽  
Vol 11 (6) ◽  
pp. 622 ◽  
Author(s):  
Federico Filipponi

Satellite data play a major role in supporting knowledge about fire severity by delivering rapid information to map fire-damaged areas in a precise and prompt way. The high availability of free medium-high spatial resolution optical satellite data, offered by the Copernicus Programme, has enabled the development of more detailed post-fire mapping. This research study deals with the exploitation of Sentinel-2 time series to map burned areas, taking advantages from the high revisit frequency and improved spatial and spectral resolution of the MSI optical sensor. A novel procedure is here presented to produce medium-high spatial resolution burned area mapping using dense Sentinel-2 time series with no a priori knowledge about wildfire occurrence or burned areas spatial distribution. The proposed methodology is founded on a threshold-based classification based on empirical observations that discovers wildfire fingerprints on vegetation cover by means of an abrupt change detection procedure. Effectiveness of the procedure in mapping medium-high spatial resolution burned areas at the national level was demonstrated for a case study on the 2017 Italy wildfires. Thematic maps generated under the Copernicus Emergency Management Service were used as reference products to assess the accuracy of the results. Multitemporal series of three different spectral indices, describing wildfire disturbance, were used to identify burned areas and compared to identify their performances in terms of spectral separability. Result showed a total burned area for the Italian country in the year 2017 of around 1400 km2, with the proposed methodology generating a commission error of around 25% and an omission error of around 40%. Results demonstrate how the proposed procedure allows for the medium-high resolution mapping of burned areas, offering a benchmark for the development of new operational downstreaming services at the national level based on Copernicus data for the systematic monitoring of wildfires.


Author(s):  
Q. Zhang ◽  
Y. Xiao

Abstract. In the current situation of frequent forest fires, the study of forest burned area mapping is important. However, there is still room for improvement in the accuracy of existing forest burning area mapping methods. Therefore, in this paper, an unsupervised method based on fire index enhancement and GRNN (General Regression Neural Network) is proposed for automated forest burned area mapping from single-date post-fire remote sensing imagery. The proposed method first uses adaptive spatial context information to enhance the generated fire index to improve its ability to indicate the burned areas. Then the uncertainty analysis is performed on the enhanced fire index to extract reliable burned samples and non-burned samples for subsequent classifier training. Finally, the improved GRNN model considering the spatial correlation of pixels is used as a classifier to binarize the enhanced fire index to generate the final burned area map. Based on two commonly used fire indexes, NBR (Normalized Burn Ratio) and BAI (Burned Area Index), this paper conducts burned area mapping experiments on a post-fire image of a forest area in Inner Mongolia, China to test the effectiveness of the proposed method, and two commonly used threshold methods (Otsu and Kmeans clustering) are also used to conduct burned area mapping based on threshold segmentation of fire index for comparison experiments. The experimental results prove the effectiveness and superiority of the proposed method. The proposed method is unsupervised and automated, so it has high application value and potential under the current situation of frequent forest fires.


2021 ◽  
Vol 13 (9) ◽  
pp. 1608
Author(s):  
Miguel M. Pinto ◽  
Ricardo M. Trigo ◽  
Isabel F. Trigo ◽  
Carlos C. DaCamara

Mapping burned areas using satellite imagery has become a subject of extensive research over the past decades. The availability of high-resolution satellite data allows burned area maps to be produced with great detail. However, their increasing spatial resolution is usually not matched by a similar increase in the temporal domain. Moreover, high-resolution data can be a computational challenge. Existing methods usually require downloading and processing massive volumes of data in order to produce the resulting maps. In this work we propose a method to make this procedure fast and yet accurate by leveraging the use of a coarse resolution burned area product, the computation capabilities of Google Earth Engine to pre-process and download Sentinel-2 10-m resolution data, and a deep learning model trained to map the multispectral satellite data into the burned area maps. For a 1500 ha fire our method can generate a 10-m resolution map in about 5 min, using a computer with an 8-core processor and 8 GB of RAM. An analysis of six important case studies located in Portugal, southern France and Greece shows the detailed computation time for each process and how the resulting maps compare to the input satellite data as well as to independent reference maps produced by Copernicus Emergency Management System. We also analyze the feature importance of each input band to the final burned area map, giving further insight about the differences among these events.


Author(s):  
Sanjeev Kumar Raut ◽  
David Nhemaphuki ◽  
Rebanta Aryal ◽  
Prakash Lakandri

Accurate and the efficient rapid mapping of the fire-damaged areas are the most fundamental things for any places to retain from environmental loss. To support the fire management, make definite strategy and planning, and restore the vegetation, it is important to detect the area before and after the fire damages. Under climate change conditions, heat and drought may trigger tough fire regimes in terms of number and dimension of fires. To deliver the rapid information of the area damaged by the fires, Burned Area Index (BAI), Normalized Burned Ratio (NBR) and their versions are applied to map burned areas from high-resolution optical satellite data. The new MSI sensor aboard Sentinel-2 satellites records the more spectral information in the red edge spectral region making it more convenient to the development of new indices for the burned area mapping. Recently, Australia had confronted a devastating bushfire recorded in the history of the nation. In this project, NBR deployed to detect burned areas at around 10m-20m spatial resolution based on pre and post-fire Sentinel-2 images. A dNBR (differentiated Normalized Burned Ratio) was calculated while burn severity was mapped as purposed by United States Geological Survey (USGS). It observed that more than half of the East Gippsland region i.e. about 53% of the area affected by the wildfire while 38% remained unburned and 8.4% showed the regrowth.


2021 ◽  
Vol 13 (8) ◽  
pp. 1509
Author(s):  
Xikun Hu ◽  
Yifang Ban ◽  
Andrea Nascetti

Accurate burned area information is needed to assess the impacts of wildfires on people, communities, and natural ecosystems. Various burned area detection methods have been developed using satellite remote sensing measurements with wide coverage and frequent revisits. Our study aims to expound on the capability of deep learning (DL) models for automatically mapping burned areas from uni-temporal multispectral imagery. Specifically, several semantic segmentation network architectures, i.e., U-Net, HRNet, Fast-SCNN, and DeepLabv3+, and machine learning (ML) algorithms were applied to Sentinel-2 imagery and Landsat-8 imagery in three wildfire sites in two different local climate zones. The validation results show that the DL algorithms outperform the ML methods in two of the three cases with the compact burned scars, while ML methods seem to be more suitable for mapping dispersed burn in boreal forests. Using Sentinel-2 images, U-Net and HRNet exhibit comparatively identical performance with higher kappa (around 0.9) in one heterogeneous Mediterranean fire site in Greece; Fast-SCNN performs better than others with kappa over 0.79 in one compact boreal forest fire with various burn severity in Sweden. Furthermore, directly transferring the trained models to corresponding Landsat-8 data, HRNet dominates in the three test sites among DL models and can preserve the high accuracy. The results demonstrated that DL models can make full use of contextual information and capture spatial details in multiple scales from fire-sensitive spectral bands to map burned areas. Using only a post-fire image, the DL methods not only provide automatic, accurate, and bias-free large-scale mapping option with cross-sensor applicability, but also have potential to be used for onboard processing in the next Earth observation satellites.


Irriga ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 585-598
Author(s):  
Pedro Henrique Jandreice Magnoni ◽  
Cesar De Oliveira Ferreira Silva ◽  
Rodrigo Lilla Manzione

SENSORIAMENTO REMOTO APLICADO AO MANEJO DA IRRIGAÇÃO EM ÁREAS COM ESCASSEZ DE DADOS: ESTUDO DE CASO EM PIVÔ CENTRAL EM ITATINGA-SP*     PEDRO HENRIQUE JANDREICE MAGNONI1; CÉSAR DE OLIVEIRA FERREIRA SILVA1 E RODRIGO LILLA MANZIONE2   1 Departamento de Engenharia Rural, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista", Avenida Universitária, n° 3780, Altos do Paraíso, 18610-034, Botucatu, São Paulo, Brasil,  [email protected]; [email protected]. 2 Departamento de Engenharia de Biossistemas, Faculdade de Ciências e Engenharia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rua Domingos da Costa Lopes, 780, CEP 17602496, Tupã – SP, Brasil. E-mail: [email protected]. *Este artigo é proveniente das dissertações de mestrado dos dois primeiros autores.     1 RESUMO   Ferramentas baseadas em sensoriamento remoto possibilitam o monitoramento do balanço hídrico da água em diferentes resoluções espaciais e temporais. Ainda assim, modelos que exigem dados in-situ impossibilitam sua aplicação em áreas com escassez de dados. No sentido de lidar com esse desafio, o presente trabalho apresenta uma abordagem de escolha do momento de irrigar, pelo balanço hídrico da água no solo, baseada em estimativa da evapotranspiração real (ETA) obtida com o uso conjunto de imagens multiespectrais do sensor MSI/SENTINEL-2 e dados de uma estação meteorológica pública. A área de estudo foi um pivô central localizado no munícipio de Itatinga-SP. Para a tomada de decisão do momento de irrigar, com base em um manejo por lâmina de irrigação fixa, foi feita a interpolação da fração evapotranspirativa entre os dias com imagens disponíveis para obter a ETA nos dias sem imagens por meio do seu produto com a evapotranspiração de referência. Essa abordagem captou variações climáticas essenciais para a estimativa do balanço hídrico em dias sem imagem. Destaca-se nessa aplicação conjunta sua capacidade de ser realizada sem necessitar de parâmetros específicos da cultura, do microclima ou do relevo, tornando-se interessante para regiões com escassez de dados.   Palavras-chave:  evapotranspiração, momento de irrigar, agriwater.     MAGNONI, P. H. J.; SILVA, C. O. F.; MANZIONE, R. L. REMOTE SENSING APPLIED TO IRRIGATION MANAGEMENT IN AREAS WITH LACK OF DATA: A CASE STUDY IN A CENTRAL PIVOT IN ITATINGA-SP     2 ABSTRACT   Remote sensing-based tools allow the monitoring of water budgets over different spatial and temporal resolutions. Nevertheless, some models require in situ data, preventing their application in areas with a lack of data. To address this challenge, this work presents an approach for irrigation scheduling, based on soil water budget estimation using actual evapotranspiration (ETA) obtained using MSI/SENTINEL-2 multispectral images and data from a public meteorological station. The study area consisted of a central pivot located in the municipality of Itatinga-SP, Brazil. For decision-making of irrigation scheduling, considering a fixed irrigation rate, the evapotranspiration fraction was interpolated between the days with available images to obtain the ETA on the days without images using its product with the reference evapotranspiration. This approach captured essential climate variations for estimating the water budget on non-image days. Noteworthy in this joint application is its suitability to be performed not requiring crop-, microclimate- or relief-specific parameters, making it useful for regions with a lack of data.   Keywords: evapotranspiration, irrigation scheduling, agriwater.


PLoS ONE ◽  
2020 ◽  
Vol 15 (5) ◽  
pp. e0232962 ◽  
Author(s):  
Fiona Ngadze ◽  
Kudzai Shaun Mpakairi ◽  
Blessing Kavhu ◽  
Henry Ndaimani ◽  
Monalisa Shingirayi Maremba

2020 ◽  
Vol 12 (15) ◽  
pp. 2422
Author(s):  
Lisa Knopp ◽  
Marc Wieland ◽  
Michaela Rättich ◽  
Sandro Martinis

Wildfires have major ecological, social and economic consequences. Information about the extent of burned areas is essential to assess these consequences and can be derived from remote sensing data. Over the last years, several methods have been developed to segment burned areas with satellite imagery. However, these methods mostly require extensive preprocessing, while deep learning techniques—which have successfully been applied to other segmentation tasks—have yet to be fully explored. In this work, we combine sensor-specific and methodological developments from the past few years and suggest an automatic processing chain, based on deep learning, for burned area segmentation using mono-temporal Sentinel-2 imagery. In particular, we created a new training and validation dataset, which is used to train a convolutional neural network based on a U-Net architecture. We performed several tests on the input data and reached optimal network performance using the spectral bands of the visual, near infrared and shortwave infrared domains. The final segmentation model achieved an overall accuracy of 0.98 and a kappa coefficient of 0.94.


Sign in / Sign up

Export Citation Format

Share Document