scholarly journals Deep Convolutional Neural Network for Rice Density Prescription Map at Ripening Stage Using Unmanned Aerial Vehicle-Based Remotely Sensed Images

2021 ◽  
Vol 14 (1) ◽  
pp. 46
Author(s):  
Lele Wei ◽  
Yusen Luo ◽  
Lizhang Xu ◽  
Qian Zhang ◽  
Qibing Cai ◽  
...  

In this paper, UAV (unmanned aerial vehicle, DJI Phantom4RTK) and YOLOv4 (You Only Look Once) target detection deep neural network methods were employed to collected mature rice images and detect rice ears to produce a rice density prescription map. The YOLOv4 model was used for rice ear quick detection of rice images captured by a UAV. The Kriging interpolation algorithm was used in ArcGIS to make rice density prescription maps. Mature rice images collected by a UAV were marked manually and used to build the training and testing datasets. The resolution of the images was 300 × 300 pixels. The batch size was 2, and the initial learning rate was 0.01, and the mean average precision (mAP) of the best trained model was 98.84%. Exceptionally, the network ability to detect rice in different health states was also studied with a mAP of 95.42% in the no infection rice images set, 98.84% in the mild infection rice images set, 94.35% in the moderate infection rice images set, and 93.36% in the severe infection rice images set. According to the severity of rice sheath blight, which can cause rice leaves to wither and turn yellow, the blighted grain percentage increased and the thousand-grain weight decreased, the rice images were divided into these four infection levels. The ability of the network model (R2 = 0.844) was compared with traditional image processing segmentation methods (R2 = 0.396) based on color and morphology features and machine learning image segmentation method (Support Vector Machine, SVM R2 = 0.0817, and K-means R2 = 0.1949) for rice ear counting. The results highlight that the CNN has excellent robustness, and can generate a wide range of rice density prescription maps.

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4442
Author(s):  
Zijie Niu ◽  
Juntao Deng ◽  
Xu Zhang ◽  
Jun Zhang ◽  
Shijia Pan ◽  
...  

It is important to obtain accurate information about kiwifruit vines to monitoring their physiological states and undertake precise orchard operations. However, because vines are small and cling to trellises, and have branches laying on the ground, numerous challenges exist in the acquisition of accurate data for kiwifruit vines. In this paper, a kiwifruit canopy distribution prediction model is proposed on the basis of low-altitude unmanned aerial vehicle (UAV) images and deep learning techniques. First, the location of the kiwifruit plants and vine distribution are extracted from high-precision images collected by UAV. The canopy gradient distribution maps with different noise reduction and distribution effects are generated by modifying the threshold and sampling size using the resampling normalization method. The results showed that the accuracies of the vine segmentation using PSPnet, support vector machine, and random forest classification were 71.2%, 85.8%, and 75.26%, respectively. However, the segmentation image obtained using depth semantic segmentation had a higher signal-to-noise ratio and was closer to the real situation. The average intersection over union of the deep semantic segmentation was more than or equal to 80% in distribution maps, whereas, in traditional machine learning, the average intersection was between 20% and 60%. This indicates the proposed model can quickly extract the vine distribution and plant position, and is thus able to perform dynamic monitoring of orchards to provide real-time operation guidance.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 327 ◽  
Author(s):  
Riccardo Dainelli ◽  
Piero Toscano ◽  
Salvatore Filippo Di Gennaro ◽  
Alessandro Matese

Natural, semi-natural, and planted forests are a key asset worldwide, providing a broad range of positive externalities. For sustainable forest planning and management, remote sensing (RS) platforms are rapidly going mainstream. In a framework where scientific production is growing exponentially, a systematic analysis of unmanned aerial vehicle (UAV)-based forestry research papers is of paramount importance to understand trends, overlaps and gaps. The present review is organized into two parts (Part I and Part II). Part II inspects specific technical issues regarding the application of UAV-RS in forestry, together with the pros and cons of different UAV solutions and activities where additional effort is needed, such as the technology transfer. Part I systematically analyzes and discusses general aspects of applying UAV in natural, semi-natural and artificial forestry ecosystems in the recent peer-reviewed literature (2018–mid-2020). The specific goals are threefold: (i) create a carefully selected bibliographic dataset that other researchers can draw on for their scientific works; (ii) analyze general and recent trends in RS forest monitoring (iii) reveal gaps in the general research framework where an additional activity is needed. Through double-step filtering of research items found in the Web of Science search engine, the study gathers and analyzes a comprehensive dataset (226 articles). Papers have been categorized into six main topics, and the relevant information has been subsequently extracted. The strong points emerging from this study concern the wide range of topics in the forestry sector and in particular the retrieval of tree inventory parameters often through Digital Aerial Photogrammetry (DAP), RGB sensors, and machine learning techniques. Nevertheless, challenges still exist regarding the promotion of UAV-RS in specific parts of the world, mostly in the tropical and equatorial forests. Much additional research is required for the full exploitation of hyperspectral sensors and for planning long-term monitoring.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4115 ◽  
Author(s):  
Yuxia Li ◽  
Bo Peng ◽  
Lei He ◽  
Kunlong Fan ◽  
Zhenxu Li ◽  
...  

Roads are vital components of infrastructure, the extraction of which has become a topic of significant interest in the field of remote sensing. Because deep learning has been a popular method in image processing and information extraction, researchers have paid more attention to extracting road using neural networks. This article proposes the improvement of neural networks to extract roads from Unmanned Aerial Vehicle (UAV) remote sensing images. D-Linknet was first considered for its high performance; however, the huge scale of the net reduced computational efficiency. With a focus on the low computational efficiency problem of the popular D-LinkNet, this article made some improvements: (1) Replace the initial block with a stem block. (2) Rebuild the entire network based on ResNet units with a new structure, allowing for the construction of an improved neural network D-Linknetplus. (3) Add a 1 × 1 convolution layer before DBlock to reduce the input feature maps, reducing parameters and improving computational efficiency. Add another 1 × 1 convolution layer after DBlock to recover the required number of output channels. Accordingly, another improved neural network B-D-LinknetPlus was built. Comparisons were performed between the neural nets, and the verification were made with the Massachusetts Roads Dataset. The results show improved neural networks are helpful in reducing the network size and developing the precision needed for road extraction.


2021 ◽  
Author(s):  
Shuang Wu ◽  
Lei Deng ◽  
Lijie Guo ◽  
Yanjie Wu

Abstract Background: Leaf Area Index (LAI) is half of the amount of leaf area per unit horizontal ground surface area. Consequently, accurate vegetation extraction in remote sensing imagery is critical for LAI estimation. However, most studies do not fully exploit the advantages of Unmanned Aerial Vehicle (UAV) imagery with high spatial resolution, such as not removing the background (soil and shadow, etc.). Furthermore, the advancement of multi-sensor synchronous observation and integration technology allows for the simultaneous collection of canopy spectral, structural, and thermal data, making it possible for data fusion.Methods: To investigate the potential of high-resolution UAV imagery combined with multi-sensor data fusion in LAI estimation. High-resolution UAV imagery was obtained with a multi-sensor integrated MicaSense Altum camera to extract the wheat canopy's spectral, structural, and thermal features. After removing the soil background, all features were fused, and LAI was estimated using Random Forest and Support Vector Machine Regression.Result: The results show that: (1) the soil background reduced the accuracy of the LAI prediction, and soil background could be effectively removed by taking advantage of high-resolution UAV imagery. After removing the soil background, the LAI prediction accuracy improved significantly, R2 raised by about 0.27, and RMSE fell by about 0.476. (2) The fusion of multi-sensor synchronous observation data improved LAI prediction accuracy and achieved the best accuracy (R2 = 0.815 and RMSE = 1.023). (3) When compared to other variables, 23 CHM, NRCT, NDRE, and BLUE are crucial for LAI estimation. Even the simple Multiple Linear Regression model could achieve high prediction accuracy (R2 = 0.679 and RMSE = 1.231), providing inspiration for rapid and efficient LAI prediction.Conclusions: The method of this study can be transferred to other sites with more extensive areas or similar agriculture structures, which will facilitate agricultural production and management.


2019 ◽  
Vol 27 ◽  
pp. 04002
Author(s):  
Diego Herrera ◽  
Hiroki Imamura

In the new technological era, facial recognition has become a central issue for a great number of engineers. Currently, there are a great number of techniques for facial recognition, but in this research, we focus on the use of deep learning. The problems with current facial recognition convection systems are that they are developed in non-mobile devices. This research intends to develop a Facial Recognition System implemented in an unmanned aerial vehicle of the quadcopter type. While it is true, there are quadcopters capable of detecting faces and/or shapes and following them, but most are for fun and entertainment. This research focuses on the facial recognition of people with criminal records, for which a neural network is trained. The Caffe framework is used for the training of a convolutional neural network. The system is developed on the NVIDIA Jetson TX2 motherboard. The design and construction of the quadcopter are done from scratch because we need the UAV for adapt to our requirements. This research aims to reduce violence and crime in Latin America.


2019 ◽  
Vol 07 (04) ◽  
pp. 245-260
Author(s):  
Adrian B. Weishäupl ◽  
Stephen D. Prior

This paper investigates the interference that arises from overlapping Unmanned Aerial Vehicle (UAV) propellers during hovering flight. The tests have been conducted on [Formula: see text] ultralight carbon fiber propellers using a bespoke mount and the RCBenchmark Series 1780 dynamometer at various degrees of overlap [Formula: see text] and vertical separation [Formula: see text]. A great deal of confusion regarding the losses that are associated with mounting propellers in a co-axial configuration is reported in the literature, with a summary of historical tandem helicopters having been conducted. The results highlight a region of beneficial overlap (0–20%), which has the potential to be advantageous to a wide range of UAVs.


Sign in / Sign up

Export Citation Format

Share Document