scholarly journals Water Budget Closure in the Upper Chao Phraya River Basin, Thailand Using Multisource Data

2021 ◽  
Vol 14 (1) ◽  
pp. 173
Author(s):  
Abhishek ◽  
Tsuyoshi Kinouchi ◽  
Ronnie Abolafia-Rosenzweig ◽  
Megumi Ito

Accurate quantification of the terrestrial water cycle relies on combinations of multisource datasets. This analysis uses data from remotely sensed, in-situ, and reanalysis records to quantify the terrestrial water budget/balance and component uncertainties in the upper Chao Phraya River Basin from May 2002 to April 2020. Three closure techniques are applied to merge independent records of water budget components, creating up to 72 probabilistic realizations of the monthly water budget for the upper Chao Phraya River Basin. An artificial neural network (ANN) model is used to gap-fill data in and between GRACE and GRACE-FO-based terrestrial water storage anomalies. The ANN model performed well with r ≥ 0.95, NRMSE = 0.24 − 0.37, and NSE ≥ 0.89 during the calibration and validation phases. The cumulative residual error in the water budget ensemble mean accounts for ~15% of the ensemble mean for both the precipitation and evapotranspiration. An increasing trend of 0.03 mm month−1 in the residual errors may be partially attributable to increases in human activity and the relative redistribution of biases among other water budget variables. All three closure techniques show similar directions of constraints (i.e., wet or dry bias) in water budget variables with slightly different magnitudes. Our quantification of water budget residual errors may help benchmark regional hydroclimate models for understanding the past, present, and future status of water budget components and effectively manage regional water resources, especially during hydroclimate extremes.

2013 ◽  
Vol 17 (11) ◽  
pp. 4577-4588 ◽  
Author(s):  
M. Pan ◽  
E. F. Wood

Abstract. The process whereby the spatially distributed runoff (generated through saturation/infiltration excesses, subsurface flow, etc.) travels over the hillslope and river network and becomes streamflow is generally referred to as "routing". In short, routing is a runoff-to-streamflow process, and the streamflow in rivers is the response to runoff integrated in both time and space. Here we develop a methodology to invert the routing process, i.e., to derive the spatially distributed runoff from streamflow (e.g., measured at gauge stations) by inverting an arbitrary linear routing model using fixed interval smoothing. We refer to this streamflow-to-runoff process as "inverse routing". Inversion experiments are performed using both synthetically generated and real streamflow measurements over the Ohio River basin. Results show that inverse routing can effectively reproduce the spatial field of runoff and its temporal dynamics from sufficiently dense gauge measurements, and the inversion performance can also be strongly affected by low gauge density and poor data quality. The runoff field is the only component in the terrestrial water budget that cannot be directly measured, and all previous studies used streamflow measurements in its place. Consequently, such studies are limited to scales where the spatial and temporal difference between the two can be ignored. Inverse routing provides a more sophisticated tool than traditional methods to bridge this gap and infer fine-scale (in both time and space) details of runoff from aggregated measurements. Improved handling of this final gap in terrestrial water budget analysis may potentially help us to use space-borne altimetry-based surface water measurements for cross-validating, cross-correcting, and assimilation with other space-borne water cycle observations.


2020 ◽  
Author(s):  
Mohamed Eltahan ◽  
Klaus Goergen ◽  
Carina Furusho-Percot ◽  
Stefan Kollet

<p>Water is one of Earth’s most important geo-ecosystem components. Here we present an evaluation of water cycle components using 12 EURO-CORDEX Regional Climate Models (RCMs) and the Terrestrial Systems Modeling Platform (TSMP) from ERA-Interim driven evaluation runs. Unlike the other RCMs, TSMP provides an <span>integrated</span> representation of the terrestrial water cycle by coupling the numerical weather prediction model COSMO, the land surface model CLM and the surface-subsurface hydrological model ParFlow, which simulates shallow groundwater states and fluxes. The study analyses precipitation (P), evapotranspiration (E), runoff (R), and terrestrial water storage (TWS=P-E-R) at a 0.11degree spatial resolution (about 12km) on EUR-11 CORDEX grid from 1996 to 2008. As reference datasets, we use ERA5 reanalysis to <span>represent</span> the complete terrestrial water budget, <span>as well as </span>the E-OBS, GLEAM and E-Run datasets for precipitation, evapotranspiration and runoff, respectively. The terrestrial water budget is investigated for twenty catchments over Europe (Guadalquivir, Guadiana, Tagus, Douro, Ebro, Garonne, Rhone, Po, Seine, Rhine, Loire, Maas, Weser, Elbe, Oder, Vistuala, Danube, Dniester, Dnieper, and Neman). Annual cycles, seasonal variations, empirical frequency distributions, spatial distributions for the water cycle components and budgets over the catchments are assessed. The analysis <span>demonstrates</span> the capability of the RCMs and TSMP to reproduce the overall <span>characteristics of the</span> water cycle over the EURO-CORDEX domain<span>, which is a prerequisite if, e.g., climate change projections with the CORDEX RCMs or TSMP are to be used for vulnerability, impacts, and adaptation studies.</span></p>


2018 ◽  
Vol 22 (1) ◽  
pp. 241-263 ◽  
Author(s):  
Yu Zhang ◽  
Ming Pan ◽  
Justin Sheffield ◽  
Amanda L. Siemann ◽  
Colby K. Fisher ◽  
...  

Abstract. Closing the terrestrial water budget is necessary to provide consistent estimates of budget components for understanding water resources and changes over time. Given the lack of in situ observations of budget components at anything but local scale, merging information from multiple data sources (e.g., in situ observation, satellite remote sensing, land surface model, and reanalysis) through data assimilation techniques that optimize the estimation of fluxes is a promising approach. Conditioned on the current limited data availability, a systematic method is developed to optimally combine multiple available data sources for precipitation (P), evapotranspiration (ET), runoff (R), and the total water storage change (TWSC) at 0.5∘ spatial resolution globally and to obtain water budget closure (i.e., to enforce P-ET-R-TWSC= 0) through a constrained Kalman filter (CKF) data assimilation technique under the assumption that the deviation from the ensemble mean of all data sources for the same budget variable is used as a proxy of the uncertainty in individual water budget variables. The resulting long-term (1984–2010), monthly 0.5∘ resolution global terrestrial water cycle Climate Data Record (CDR) data set is developed under the auspices of the National Aeronautics and Space Administration (NASA) Earth System Data Records (ESDRs) program. This data set serves to bridge the gap between sparsely gauged regions and the regions with sufficient in situ observations in investigating the temporal and spatial variability in the terrestrial hydrology at multiple scales. The CDR created in this study is validated against in situ measurements like river discharge from the Global Runoff Data Centre (GRDC) and the United States Geological Survey (USGS), and ET from FLUXNET. The data set is shown to be reliable and can serve the scientific community in understanding historical climate variability in water cycle fluxes and stores, benchmarking the current climate, and validating models.


2019 ◽  
Vol 11 (17) ◽  
pp. 1970 ◽  
Author(s):  
Idowu ◽  
Zhou

Floods frequently occur in Nigeria. The catastrophic 2012 flood in Nigeria claimed 363 lives and affected about seven million people. A total loss of about 2.29 trillion Naira (7.2 billion US Dollars) was estimated. The effect of flooding in the country has been devastating because of sparse to no flood monitoring, and a lack of an effective early flood warning system in the country. Here, we evaluated the efficacy of using the Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage anomaly (TWSA) to evaluate the hydrological conditions of the Lower Niger River Basin (LNRB) in Nigeria in terms of precipitation and antecedent terrestrial water storage prior to the 2012 flood event. Furthermore, we accessed the potential of the GRACE-based flood potential index (FPI) at correctly predicting previous floods, especially the devastating 2012 flood event. For validation, we compared the GRACE terrestrial water storage capacity (TWSC) quantitatively and qualitatively to the water budget of TWSC and Dartmouth Flood Observatory (DFO) respectively. Furthermore, we derived a water budget-based FPI using Reager’s methodology and compared it to the GRACE-derived FPI quantitatively. Generally, the GRACE TWSC estimates showed seasonal consistency with the water budget TWSC estimates with a correlation coefficient of 0.8. The comparison between the GRACE-derived FPI and water budget-derived FPI gave a correlation coefficient of 0.9 and also agreed well with the flood reported by the DFO. Also, the FPI showed a marked increase with precipitation which implies that rainfall is the main cause of flooding in the study area. Additionally, the computed GRACE-based storage deficit revealed that there was a decrease in water storage prior to the flooding month while the FPI increased. Hence, the GRACE-based FPI and storage deficit when supplemented with water budget-based FPI could suggest a potential for flood prediction and water storage monitoring respectively.


2014 ◽  
Vol 955-959 ◽  
pp. 3098-3104
Author(s):  
Deng Hua Yan ◽  
Yong Yuan ◽  
Yang Wen Jia ◽  
Dong Lai Hu ◽  
Juan Chen ◽  
...  

The relationship between the water budget of wetlands and the water cycle process in local river basin is bidirectional. The recovery and function performance of the wetland are based on this relationship. Hydrological models are the effective tool to detecting this link. The distributed hydrologic model was the key supports in this study and was used to quantitative identify the change of water budget of the wetlands which was impacted by the water cycle evolution in Nenjiang River basin in Northeast China. The results indicated that precipitation, runoff and evapotranspiration both in the basin and wetlands present similar declining trend. The precipitation is the major recharge source, and the evapotranspiration is the primary output of wetlands. The value of mean change in storage of the wetlands is negative which is caused by the decrease of the area of wetlands. The results of land use pattern evolution change surface inflow in the wetlands in the basin scenarios simulation indicated. These results suggested that water budget of wetlands is influenced by water cycle in basin. And some reasonable measures for wetlands management should not only base on its features, but also pay attention to hydrological regime in basin.


2017 ◽  
Author(s):  
Yu Zhang ◽  
Ming Pan ◽  
Justin Sheffield ◽  
Amanda Siemann ◽  
Colby Fisher ◽  
...  

Abstract. Closing the terrestrial water budget is necessary to providing consistent estimates of budget components for understanding water resources and changes over time. Given the lack of in-situ observations of budget components at anything but local scale, merging information from multiple data sources (e.g. in-situ observation, satellite remote sensing, land surface model and reanalysis) through data assimilation techniques that optimize the estimation of fluxes is a promising approach. In this study, a systematic method is developed to optimally combine multiple available data sources for precipitation (P), evapotranspiration (ET), runoff (R) and the total water storage change (TWSC) at 0.5° spatial resolution globally and to obtain water budget closure (i.e. to enforce P − ET − R − TWSC = 0) through a Constrained Kalman Filter (CKF) data assimilation technique. The resulting long-term (1984–2010), monthly, 0.5° resolution global terrestrial water cycle Climate Data Record (CDR) dataset is developed under the auspices of the National Aeronautics and Space Administration (NASA) Earth System Data Records (ESDRs) program. This dataset serves to bridge the gap between sparsely gauged regions and the regions with sufficient in-situ observations in investigating the temporal and spatial variability in the terrestrial hydrology at multiple scales. The CDR created in this study is validated against in-situ measurements like river discharge from the Global Runoff Data Centre (GRDC) and the United States Geological Survey (USGS) and ET from FLUXNET. The dataset is shown to be reliable and can serve the scientific community in understanding historical climate variability in water cycle fluxes and stores, benchmarking the current climate, and validating models.


2007 ◽  
Vol 8 (5) ◽  
pp. 969-988 ◽  
Author(s):  
Biljana Music ◽  
Daniel Caya

Abstract The water cycle over a given region is governed by many complex multiscale interactions and feedbacks, and their representation in climate models can vary in complexity. To understand which of the key processes require better representation, evaluation and validation of all components of the simulated water cycle are required. Adequate assessing of the simulated hydrological cycle over a given region is not trivial because observations for various water cycle components are seldom available at the regional scale. In this paper, a comprehensive validation method of the water budget components over a river basin is presented. In addition, the sensitivity of the hydrological cycle in the Canadian Regional Climate Model (CRCM) to a more realistic representation of the land surface processes, as well as radiation, cloud cover, and atmospheric boundary layer mixing is investigated. The changes to the physical parameterizations are assessed by evaluating the CRCM hydrological cycle over the Mississippi River basin. The first part of the evaluation looks at the basin annual means. The second part consists of the analysis and validation of the annual cycle of all water budget components. Finally, the third part is directed toward the spatial distribution of the annual mean precipitation, evapotranspiration, and runoff. Results indicate a strong response of the CRCM evapotranspiration and precipitation biases to the physical parameterization changes. Noticeable improvement was obtained in the simulated annual cycles of precipitation, evapotranspiration, moisture flux convergence, and terrestrial water storage tendency when more sophisticated physical parameterizations were used. Some improvements are also observed for the simulated spatial distribution of precipitation and evapotranspiration. The simulated runoff is less sensitive to changes in the CRCM physical parameterizations.


2013 ◽  
Vol 10 (6) ◽  
pp. 6897-6929 ◽  
Author(s):  
M. Pan ◽  
E. F. Wood

Abstract. The process where the spatially distributed runoff (generated through saturation/infiltration excesses, subsurface flow, etc.) travels over the hillslope and river network and becomes streamflow is generally referred as "routing". In short, routing is a runoff-to-streamflow process, and the streamflow in rivers is the response to runoff integrated in both time and space. Here we develop a methodology to invert the routing process, i.e., to derive the spatially distributed runoff from streamflow (e.g. measured at gauge stations) by inverting an arbitrary linear routing model using fixed interval smoothing. We refer this streamflow-to-runoff process as "inverse routing". Inversion experiments are performed using both synthetically generated and real streamflow measurements over the Ohio river basin. Results show that inverse routing can very effectively reproduce the spatial field of runoff and its temporal dynamics from gauge measurements. Runoff field is the only component in terrestrial water budget that cannot be directly measured and all previous studies use streamflow measurements in its place. Consequently, such studies are limited to scales where the spatial and temporal difference between the two can be ignored. Now inverse routing bridges the gap and provides a best, if not only, mean to estimate runoff field at any spatial or temporal scales from observations. Closing this final gap in terrestrial water budget analysis opens up opportunities in using space-borne altimetry based surface water measurements for cross-validating, cross-correcting, and assimilation with other space-borne water cycle observations. Also, as the inverted runoff can be used to reconstruct the streamflow everywhere in the basin, inverse routing will be extremely useful in reconstructing missing river gauge records from other available gauges or even to monitor streamflow at un-gauged locations.


Author(s):  
J. Huang ◽  
Q. Zhou

Water is essential for human survival and well-being, and important to virtually all sectors of the economy. In the aridzone of China’s west, water resource is the controlling factor on the distribution of human settlements. Water cycle variation is sensitive to temperature and precipitation, which are influenced by human activity and climate change. Satellite observations of Earth’s time-variable gravity field from the Gravity Recovery and Climate Experiment (GRACE) mission, which enable direct measurement of changes of total terrestrial water storage, could be useful to aid this modelling. In this pilot study, TWS change from 2002 to 2013 obtained from GRACE satellite mission over the Kaidu River Basin in Xinjiang, China is presented. Precipitation and temperature data from in-situ station and National Satellite Meteorological Centre of China (NSMC) are analysed to examine whether there is a statistically significant correlation between them.


Sign in / Sign up

Export Citation Format

Share Document