scholarly journals Feasibility of Telecom-Wavelength Photonic Integrated Circuits for Gas Sensors

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2870 ◽  
Author(s):  
Andreas Hänsel ◽  
Martijn Heck

To be of commercial interest, gas sensors must optimise, among others, sensitivity, selectivity, longevity, cost and measurement speed. Using the example of ammonia, we establish that integrated optical sensors provide means to maintain the benefits of optical detection set-ups at, in principle, a lower cost and smaller footprint than currently available commercial products. Photonic integrated circuits (PICs) can be used in environmental and agricultural monitoring. The small footprint and great cost scaling of PICs allow for sensor networks with multiple devices. We show, that Indium Phosphide based commercial foundries reached the technological maturity to enable ammonia detection levels at less than 100 ppb. The current unavailability of portable, low cost ammonia sensors with such detection levels prevents emission monitoring, for example, in pig farms. The feasibility of these sensors is investigated by applying the common noise figures of the multiproject wafer platforms operating around 1550 nm to a model for an absorption measurement. The analysis is extended to other relevant gas species with absorption features near telecom-wavelengths.

ISRN Optics ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-27 ◽  
Author(s):  
Zhou Fang ◽  
Ce Zhou Zhao

With the increasing bandwidth requirement in computing and signal processing, the inherent limitations in metallic interconnection are seriously threatening the future of traditional IC industry. Silicon photonics can provide a low-cost approach to overcome the bottleneck of the high data rate transmission by replacing the original electronic integrated circuits with photonic integrated circuits. Although the commercial promise has not been realized, this perspective gives huge impetus to the development of silicon photonics these years. This paper provides an overview of the progress and the state of the art of each component in silicon photonics, including waveguides, filters, modulators, detectors, and lasers, mainly in the last five years.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Jiaqi Wang ◽  
Zhenzhou Cheng ◽  
Xuejin Li

Graphene, a single layer of carbon atoms arranged in the form of hexagonal lattice, has many intriguing optical and electrical properties. However, due to the atomic layer thickness, light-matter interactions in the monolayer graphene are naturally weak when the light is normally incident to the material. To overcome this challenge, waveguide-integrated graphene optoelectronic devices have been proposed and demonstrated. In such coplanar configurations, the propagating light in the waveguide can significantly interact with the graphene layer integrated on the surface of the waveguide. The combination of photonic integrated circuits and graphene also enables the development of graphene devices by using silicon photonic technology, which greatly extends the scope of graphene’s application. Moreover, the waveguide-integrated graphene devices are fully CMOS-compatible, which makes it possible to achieve low-cost and high-density integration in the future. As a result, the area has been attracting more and more attention in recent years. In this paper, we introduce basic principles and research advances of waveguide-integrated graphene optoelectronics.


Author(s):  
Peter Girouard ◽  
Pice Chen ◽  
Yongming Tu ◽  
Young Kyu Jeong ◽  
Zhifu Liu ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 263
Author(s):  
Claire Besancon ◽  
Delphine Néel ◽  
Dalila Make ◽  
Joan Manel Ramírez ◽  
Giancarlo Cerulo ◽  
...  

The tremendous demand for low-cost, low-consumption and high-capacity optical transmitters in data centers challenges the current InP-photonics platform. The use of silicon (Si) photonics platform to fabricate photonic integrated circuits (PICs) is a promising approach for low-cost large-scale fabrication considering the CMOS-technology maturity and scalability. However, Si itself cannot provide an efficient emitting light source due to its indirect bandgap. Therefore, the integration of III-V semiconductors on Si wafers allows us to benefit from the III-V emitting properties combined with benefits offered by the Si photonics platform. Direct epitaxy of InP-based materials on 300 mm Si wafers is the most promising approach to reduce the costs. However, the differences between InP and Si in terms of lattice mismatch, thermal coefficients and polarity inducing defects are challenging issues to overcome. III-V/Si hetero-integration platform by wafer-bonding is the most mature integration scheme. However, no additional epitaxial regrowth steps are implemented after the bonding step. Considering the much larger epitaxial toolkit available in the conventional monolithic InP platform, where several epitaxial steps are often implemented, this represents a significant limitation. In this paper, we review an advanced integration scheme of AlGaInAs-based laser sources on Si wafers by bonding a thin InP seed on which further regrowth steps are implemented. A 3 µm-thick AlGaInAs-based MutiQuantum Wells (MQW) laser structure was grown onto on InP-SiO2/Si (InPoSi) wafer and compared to the same structure grown on InP wafer as a reference. The 400 ppm thermal strain on the structure grown on InPoSi, induced by the difference of coefficient of thermal expansion between InP and Si, was assessed at growth temperature. We also showed that this structure demonstrates laser performance similar to the ones obtained for the same structure grown on InP. Therefore, no material degradation was observed in spite of the thermal strain. Then, we developed the Selective Area Growth (SAG) technique to grow multi-wavelength laser sources from a single growth step on InPoSi. A 155 nm-wide spectral range from 1515 nm to 1670 nm was achieved. Furthermore, an AlGaInAs MQW-based laser source was successfully grown on InP-SOI wafers and efficiently coupled to Si-photonic DBR cavities. Altogether, the regrowth on InP-SOI wafers holds great promises to combine the best from the III-V monolithic platform combined with the possibilities offered by the Si photonics circuitry via efficient light-coupling.


Sign in / Sign up

Export Citation Format

Share Document