scholarly journals AlGaInAs Multi-Quantum Well Lasers on Silicon-on-Insulator Photonic Integrated Circuits Based on InP-Seed-Bonding and Epitaxial Regrowth

2021 ◽  
Vol 12 (1) ◽  
pp. 263
Author(s):  
Claire Besancon ◽  
Delphine Néel ◽  
Dalila Make ◽  
Joan Manel Ramírez ◽  
Giancarlo Cerulo ◽  
...  

The tremendous demand for low-cost, low-consumption and high-capacity optical transmitters in data centers challenges the current InP-photonics platform. The use of silicon (Si) photonics platform to fabricate photonic integrated circuits (PICs) is a promising approach for low-cost large-scale fabrication considering the CMOS-technology maturity and scalability. However, Si itself cannot provide an efficient emitting light source due to its indirect bandgap. Therefore, the integration of III-V semiconductors on Si wafers allows us to benefit from the III-V emitting properties combined with benefits offered by the Si photonics platform. Direct epitaxy of InP-based materials on 300 mm Si wafers is the most promising approach to reduce the costs. However, the differences between InP and Si in terms of lattice mismatch, thermal coefficients and polarity inducing defects are challenging issues to overcome. III-V/Si hetero-integration platform by wafer-bonding is the most mature integration scheme. However, no additional epitaxial regrowth steps are implemented after the bonding step. Considering the much larger epitaxial toolkit available in the conventional monolithic InP platform, where several epitaxial steps are often implemented, this represents a significant limitation. In this paper, we review an advanced integration scheme of AlGaInAs-based laser sources on Si wafers by bonding a thin InP seed on which further regrowth steps are implemented. A 3 µm-thick AlGaInAs-based MutiQuantum Wells (MQW) laser structure was grown onto on InP-SiO2/Si (InPoSi) wafer and compared to the same structure grown on InP wafer as a reference. The 400 ppm thermal strain on the structure grown on InPoSi, induced by the difference of coefficient of thermal expansion between InP and Si, was assessed at growth temperature. We also showed that this structure demonstrates laser performance similar to the ones obtained for the same structure grown on InP. Therefore, no material degradation was observed in spite of the thermal strain. Then, we developed the Selective Area Growth (SAG) technique to grow multi-wavelength laser sources from a single growth step on InPoSi. A 155 nm-wide spectral range from 1515 nm to 1670 nm was achieved. Furthermore, an AlGaInAs MQW-based laser source was successfully grown on InP-SOI wafers and efficiently coupled to Si-photonic DBR cavities. Altogether, the regrowth on InP-SOI wafers holds great promises to combine the best from the III-V monolithic platform combined with the possibilities offered by the Si photonics circuitry via efficient light-coupling.

ISRN Optics ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-27 ◽  
Author(s):  
Zhou Fang ◽  
Ce Zhou Zhao

With the increasing bandwidth requirement in computing and signal processing, the inherent limitations in metallic interconnection are seriously threatening the future of traditional IC industry. Silicon photonics can provide a low-cost approach to overcome the bottleneck of the high data rate transmission by replacing the original electronic integrated circuits with photonic integrated circuits. Although the commercial promise has not been realized, this perspective gives huge impetus to the development of silicon photonics these years. This paper provides an overview of the progress and the state of the art of each component in silicon photonics, including waveguides, filters, modulators, detectors, and lasers, mainly in the last five years.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Jiaqi Wang ◽  
Zhenzhou Cheng ◽  
Xuejin Li

Graphene, a single layer of carbon atoms arranged in the form of hexagonal lattice, has many intriguing optical and electrical properties. However, due to the atomic layer thickness, light-matter interactions in the monolayer graphene are naturally weak when the light is normally incident to the material. To overcome this challenge, waveguide-integrated graphene optoelectronic devices have been proposed and demonstrated. In such coplanar configurations, the propagating light in the waveguide can significantly interact with the graphene layer integrated on the surface of the waveguide. The combination of photonic integrated circuits and graphene also enables the development of graphene devices by using silicon photonic technology, which greatly extends the scope of graphene’s application. Moreover, the waveguide-integrated graphene devices are fully CMOS-compatible, which makes it possible to achieve low-cost and high-density integration in the future. As a result, the area has been attracting more and more attention in recent years. In this paper, we introduce basic principles and research advances of waveguide-integrated graphene optoelectronics.


2012 ◽  
Vol 60 (4) ◽  
pp. 683-689
Author(s):  
R. Piramidowicz ◽  
S. Stopiński ◽  
K. Ławniczuk ◽  
K. Welikow ◽  
P. Szczepański ◽  
...  

Abstract In this work a brief review on photonic integrated circuits (PICs) is presented with a specific focus on integrated lasers and amplifiers. The work presents the history of development of the integration technology in photonics and its comparison to microelectronics. The major part of the review is focused on InP-based photonic integrated circuits, with a short description of the potential of the silicon technology. A completely new way of fabrication of PICs, called generic integration technology, is presented and discussed. The basic assumption of this approach is the very same as in the case of electronic circuits and states that a limited set of standard components, both active and passive, enables designing of a complex, multifunctional PIC of every type. As a result, functionally advanced, compact, energy efficient and cost-optimized photonic devices can be fabricated. The work presents also selected examples of active PICs like multiwavelength laser sources, discretely tunable lasers, WDM transmitters, ring lasers etc.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2264 ◽  
Author(s):  
Hongtao Zhong ◽  
Tingyang Duan ◽  
Hengrong Lan ◽  
Meng Zhou ◽  
Fei Gao

Photoacoustic tomography (PAT), a promising medical imaging method that combines optical and ultrasound techniques, has been developing for decades mostly in preclinical application. A recent trend is to utilize the economical laser source to develop a low-cost sensing and imaging system, which aims at an affordable solution in clinical application. These low-cost laser sources have different modulation modes such as pulsed modulation, continuous modulation and coded modulation to generate different profiles of PA signals in photoacoustic (PA) imaging. In this paper, we review the recent development of the photoacoustic sensing and imaging based on the economical laser sources such as laser diode (LD) and light-emitting diode (LED) in different kinds of modulation types, and discuss several representative methods to improve the performance of such imaging systems based on low-cost laser sources. Finally, some perspectives regarding the future development of portable PAT systems are discussed, followed by the conclusion.


2020 ◽  
Vol 10 (4) ◽  
pp. 1538 ◽  
Author(s):  
Xin Mu ◽  
Sailong Wu ◽  
Lirong Cheng ◽  
H.Y. Fu

Silicon photonics has drawn increasing attention in the past few decades and is a promising key technology for future daily applications due to its various merits including ultra-low cost, high integration density owing to the high refractive index of silicon, and compatibility with current semiconductor fabrication process. Optical interconnects is an important issue in silicon photonic integrated circuits for transmitting light, and fiber-to-chip optical interconnects is vital in application scenarios such as data centers and optical transmission systems. There are mainly two categories of fiber-to-chip optical coupling: off-plane coupling and in-plane coupling. Grating couplers work under the former category, while edge couplers function as in-plane coupling. In this paper, we mainly focus on edge couplers in silicon photonic integrated circuits. We deliver an introduction to the research background, operation mechanisms, and design principles of silicon photonic edge couplers. The state-of-the-art of edge couplers is reviewed according to the different structural configurations of the device, while identifying the performance, fabrication feasibility, and applications. In addition, a brief comparison between edge couplers and grating couplers is conducted. Packaging issues are also discussed, and several prospective techniques for further improvements of edge couplers are proposed.


2013 ◽  
Vol 69 (7) ◽  
pp. 1231-1240 ◽  
Author(s):  
Thomas A. White ◽  
Anton Barty ◽  
Francesco Stellato ◽  
James M. Holton ◽  
Richard A. Kirian ◽  
...  

A processing pipeline for diffraction data acquired using the `serial crystallography' methodology with a free-electron laser source is described with reference to the crystallographic analysis suiteCrystFELand the pre-processing programCheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show that the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam.


Sign in / Sign up

Export Citation Format

Share Document