scholarly journals Real-Time Safety Evaluation for Slope during Construction Using Numerical Forecast and Sensor Monitoring Platform

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2978 ◽  
Author(s):  
Sherong Zhang ◽  
Dejun Hou ◽  
Chao Wang ◽  
Xuexing Cao ◽  
Fenghua Zhang ◽  
...  

Geology uncertainties and real-time construction modification induce an increase of construction risk for large-scale slope in hydraulic engineering. However, the real-time evaluation of slope safety during construction is still an unsettled issue for mapping large-scale slope hazards. In this study, the real-time safety evaluation method is proposed coupling a construction progress with numerical analysis of slope safety. New revealed geological information, excavation progress adjustment, and the support structures modification are updating into the slope safety information model-by-model restructuring. A dynamic connection mapping method between the slope restructuring model and the computable numerical model is illustrated. The numerical model can be generated rapidly and automatically in database. A real-time slope safety evaluation system is developed and its establishing method, prominent features, and application results are briefly introduced in this paper. In our system, the interpretation of potential slope risk is conducted coupling dynamic numerical forecast and monitoring data feedback. The real case study results in a comprehensive real-time safety evaluation application for large slope that illustrates the change of environmental factor and construction state over time.

2014 ◽  
Vol 933 ◽  
pp. 584-589
Author(s):  
Zhi Chun Zhang ◽  
Song Wei Li ◽  
Wei Ren Wang ◽  
Wei Zhang ◽  
Li Jun Qi

This paper presents a system in which the cluster devices are controlled by single-chip microcomputers, with emphasis on the cluster management techniques of single-chip microcomputers. Each device in a cluster is controlled by a single-chip microcomputer collecting sample data sent to and driving the device by driving data received from the same cluster management computer through COMs. The cluster management system running on the cluster management computer carries out such control as initial SCM identification, run time slice management, communication resource utilization, fault tolerance and error corrections on single-chip microcomputers. Initial SCM identification is achieved by signal responses between the single-chip microcomputers and the cluster management computer. By using the port priority and the parallelization of serial communications, the systems real-time performance is maximized. The real-time performance can be adjusted and improved by increasing or decreasing COMs and the ports linked to each COM, and the real-time performance can also be raised by configuring more cluster management computers. Fault-tolerant control occurs in the initialization phase and the operational phase. In the initialization phase, the cluster management system incorporates unidentified single-chip microcomputers into the system based on the history information recorded on external storage media. In the operational phase, if an operation error of reading and writing on a single-chip microcomputer reaches a predetermined threshold, the single-chip microcomputer is regarded as serious fault or not existing. The cluster management system maintains accuracy maintenance database on external storage medium to solve nonlinear control of specific devices and accuracy maintenance due to wear. The cluster management system uses object-oriented method to design a unified driving framework in order to enable the implementation of the cluster management system simplified, standardized and easy to transplant. The system has been applied in a large-scale simulation system of 230 single-chip microcomputers, which proves that the system is reliable, real-time and easy to maintain.


2013 ◽  
Vol 336-338 ◽  
pp. 185-191
Author(s):  
Xiao Peng Xie ◽  
Dong Hui Wang ◽  
Guo Jian Huang ◽  
Xin Hua Wang

The arrangement positions and the quantities are different for different types of cranes. In order to make suitable decision, much investigate and survey was done at preliminary stage, and we know that the flange connected gate legs and turntables, the connections between load-bearing beam and rotary column under the engine room and the connections between jib and turntable are easy to lose efficient, and their mainly failure modes are cracks. By the method of finite element, 32 sensors (including 21 welding strain FBG sensors and 11 temperature FBG sensors) were used after doing much investigate and survey and finite element modeling analysis, which are arranged in different places of a gantry crane of MQ2533, for real-time structure health monitoring. This method makes the sensor data obtained more realistically reflects the crane structural condition, which provides reliable data support for crane safety monitoring and safety evaluation. Then a software platform is developed to monitor the real-time stress. If the real-time stress exceeds the allowable stress, it issues an alarm signal to the operator.


2014 ◽  
Vol 631-632 ◽  
pp. 516-520
Author(s):  
Chao Yang ◽  
Shui Yan Dai ◽  
Ling Da Wu ◽  
Rong Huan Yu

The method of view-dependent smoothly rendering of large-scale vector data based on the vector texture on virtual globe is presented. The vector texture is rasterized from the vector data based on view-dependent quadtree LOD. And the vector texture is projected on the top of the terrain. The smooth transition of multi-level texture is realized by adjusting the transparency of texture dynamically based on view range in two processes to avoid texture “popping”. In “IN” process, the texture’s alpha value increases when the view range goes up while In “OUT” process, the texture’s alpha value decreases. the vector texture buffer updating method is used to accelerate the texture fetching based on the least-recently-used algorithm. In the end, the real-time large-scale vector data rendering is implemented on virtual globe. The result shows that this method can real-time render large-scale vector data smoothly.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chuan He ◽  
Lianxiong Liu ◽  
Changhua Hu

In the process of the deformation monitoring for large-scale structure, the mobile vision method is often used. However, most of the existent researches rarely consider the real-time property and the variation of the intrinsic parameters. This paper proposes a real-time deformation monitoring method for the large-scale structure based on a relay camera. First, we achieve the real-time pose-position relationship by using the relay camera and the coded mark points whose coordinates are known. The real-time extrinsic parameters of the measuring camera are then solved according to the constraint relationship between the relay camera and the measuring camera. Second, the real-time intrinsic parameters of the measuring camera are calculated based on the real-time constraint relationship among the extrinsic parameters, the intrinsic parameters, and the fundamental matrix. Finally, the coordinates of the noncoded measured mark points, which are affixed to the surface of the structure, are achieved. Experimental results show that the accuracy of the proposed method is higher than 1.8 mm. Besides, the proposed method also possesses the real-time and automation property.


2014 ◽  
Vol 635-637 ◽  
pp. 824-831 ◽  
Author(s):  
Xiang Zhou ◽  
Zhi Hui Lei ◽  
Dan Fu ◽  
Xiao Hu Zhang

This paper proposes a ground-based videometric method and system for measuring the glide track of landing aircraft in real time. The proposed method is applicable for large-scale measurement via regional relays with multiple cameras. Its measurement ranges from kilometers away to the landing point, and it simultaneously fulfills the real-time measurement of the position and trajectory of aircraft. The real-time measurement result of the actual aircraft landing process shows a deviation from DGPS(Difference Global Positioning System) as small as 20 cm in the measuring region of 1 km. The proposed measurement method for aircraft landing track based on videometrics can establish a new type of landing aid system removed from radar and GPS.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Shuqi Xiao ◽  
Yaosheng Chen ◽  
Liangliang Wang ◽  
Jintao Gao ◽  
Delin Mo ◽  
...  

Porcine reproductive and respiratory syndrome (PRRS) is a leading disease in pig industry worldwide and can result in serious economic losses each year. The PRRS epidemic situation in China has been very complicated since the unprecedented large-scale highly pathogenic PRRS (HP-PRRS) outbreaks in 2006. And now the HP-PRRS virus (HP-PRRSV) and classical North American type PRRSV strains have coexisted in China. Rapid differential detection of the two strains of PRRSV is very important for effective PRRS control. The real-time RT-PCR for simultaneous detection and differentiation of HP-PRRSV and PRRSV by using both SYBR Green and TaqMan probes was developed and validated. Both assays can be used for rapid detection and strain-specific identification of HP-PRRSV and PRRSV. However, the TaqMan probe method had the highest detection rate whereas the conventional RT-PCR was the lowest. The real-time RT-PCR developed based on SYBR Green and TaqMan probe could be used for simultaneous detection and differentiation of HP-PRRSV and PRRSV in China, which will benefit much the PRRS control and research.


2013 ◽  
Vol 275-277 ◽  
pp. 138-151
Author(s):  
Bing Wang ◽  
Hai Qing Si

An unstructured moving grid scheme is applied to track the real-time motion state of the material interface with large-scale deformation induced by shock in the compressible multi-material flow. The material interface is denoted as a special internal boundary which is made up of unstructured grid edges, and on both sides of that there exist grids used for the two different materials. Riemann problem is solved in order to track the motion of the grid points on the material interface, and the local re-meshing technique is also applied to cope with the large-scale deformation of the moving grids near the interface, especially for the case of strong shocks existing in the multi-material flows. Simultaneously, the material interface is also defined as a kind of grid-deforming boundary in case grid volumes are negative. To obtain the resolution of the whole multi-material flow domain, the arbitrary Lagrangian-Eulerian (ALE) is discretized using Harten-Lax-van Leer-Contact (HLLC) scheme. Several numerical calculations from shock-interface examples demonstrate that this moving grid technique is feasible and effective in tracking the real-time motion state of the material interface.


Author(s):  
D. R. Pattanaik ◽  
Raju Mandal ◽  
R. Phani ◽  
Avijit Dey ◽  
Rajib Chattopadhyay ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 2154
Author(s):  
Gabbo P. H. Ching ◽  
Ray K. W. Chang ◽  
Tess X. H. Luo ◽  
Wallace W. L. Lai

Three-dimensional GPR imaging requires evenly and densely distributed measurements, ideally collected without the need for ground surface markings, which is difficult to achieve in large-scale surveys. In this study, a guidance system was developed to guide the GPR operator to walk along a predesigned traverse, analogous to the flight path design of an airborne drone. The guidance system integrates an auto-track total station unit (ATTS), and by estimating the real-time offset angle and distance, guidance corrections can be provided to the operator in real time. There are two advantages: (1) reduced survey time as grid marking on the ground is no longer needed and (2) accurate positioning of each traverse. Lab and field experiments were conducted in order to validate the guidance system. The results show that with the guidance system, the survey paths were better defined and followed in terms of feature connectivity and resolution of images, and the C-scans generated were closer to the real subsurface world.


Sign in / Sign up

Export Citation Format

Share Document