scholarly journals Molecular Fingerprints of Hemoglobin on a Nanofilm Chip

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3016 ◽  
Author(s):  
Yeşeren Saylan ◽  
Adil Denizli

Hemoglobin is an iron carrying protein in erythrocytes and also an essential element to transfer oxygen from the lungs to the tissues. Abnormalities in hemoglobin concentration are closely correlated with health status and many diseases, including thalassemia, anemia, leukemia, heart disease, and excessive loss of blood. Particularly in resource-constrained settings existing blood analyzers are not readily applicable due to the need for high-level instrumentation and skilled personnel, thereby inexpensive, easy-to-use, and reliable detection methods are needed. Herein, a molecular fingerprints of hemoglobin on a nanofilm chip was obtained for real-time, sensitive, and selective hemoglobin detection using a surface plasmon resonance system. Briefly, through the photopolymerization technique, a template (hemoglobin) was imprinted on a monomeric (acrylamide) nanofilm on-chip using a cross-linker (methylenebisacrylamide) and an initiator-activator pair (ammonium persulfate-tetramethylethylenediamine). The molecularly imprinted nanofilm on-chip was characterized by atomic force microscopy and ellipsometry, followed by benchmarking detection performance of hemoglobin concentrations from 0.0005 mg mL−1 to 1.0 mg mL−1. Theoretical calculations and real-time detection implied that the molecularly imprinted nanofilm on-chip was able to detect as little as 0.00035 mg mL−1 of hemoglobin. In addition, the experimental results of hemoglobin detection on the chip well-fitted with the Langmuir adsorption isotherm model with high correlation coefficient (0.99) and association and dissociation coefficients (39.1 mL mg−1 and 0.03 mg mL−1) suggesting a monolayer binding characteristic. Assessments on selectivity, reusability and storage stability indicated that the presented chip is an alternative approach to current hemoglobin-targeted assays in low-resource regions, as well as antibody-based detection procedures in the field. In the future, this molecularly imprinted nanofilm on-chip can easily be integrated with portable plasmonic detectors, improving its access to these regions, as well as it can be tailored to detect other proteins and biomarkers.

Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3523 ◽  
Author(s):  
Lili Zhang ◽  
Yi Zhang ◽  
Zhen Zhang ◽  
Jie Shen ◽  
Huibin Wang

In this paper, we consider water surface object detection in natural scenes. Generally, background subtraction and image segmentation are the classical object detection methods. The former is highly susceptible to variable scenes, so its accuracy will be greatly reduced when detecting water surface objects due to the changing of the sunlight and waves. The latter is more sensitive to the selection of object features, which will lead to poor generalization as a result, so it cannot be applied widely. Consequently, methods based on deep learning have recently been proposed. The River Chief System has been implemented in China recently, and one of the important requirements is to detect and deal with the water surface floats in a timely fashion. In response to this case, we propose a real-time water surface object detection method in this paper which is based on the Faster R-CNN. The proposed network model includes two modules and integrates low-level features with high-level features to improve detection accuracy. Moreover, we propose to set the different scales and aspect ratios of anchors by analyzing the distribution of object scales in our dataset, so our method has good robustness and high detection accuracy for multi-scale objects in complex natural scenes. We utilized the proposed method to detect the floats on the water surface via a three-day video surveillance stream of the North Canal in Beijing, and validated its performance. The experiments show that the mean average precision (MAP) of the proposed method was 83.7%, and the detection speed was 13 frames per second. Therefore, our method can be applied in complex natural scenes and mostly meets the requirements of accuracy and speed of water surface object detection online.


Buildings ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 68
Author(s):  
Mankyu Sung

This paper proposes a graph-based algorithm for constructing 3D Korean traditional houses automatically using a computer graphics technique. In particular, we target designing the most popular traditional house type, a giwa house, whose roof is covered with a set of Korean traditional roof tiles called giwa. In our approach, we divided the whole design processes into two different parts. At a high level, we propose a special data structure called ‘modeling graphs’. A modeling graph consists of a set of nodes and edges. A node represents a particular component of the house and an edge represents the connection between two components with all associated parameters, including an offset vector between components. Users can easily add/ delete nodes and make them connect by an edge through a few mouse clicks. Once a modeling graph is built, then it is interpreted and rendered on a component-by-component basis by traversing nodes in a procedural way. At a low level, we came up with all the required parameters for constructing the components. Among all the components, the most beautiful but complicated part is the gently curved roof structures. In order to represent the sophisticated roof style, we introduce a spline curve-based modeling technique that is able to create curvy silhouettes of three different roof styles. In this process, rather than just applying a simple texture image onto the roof, which is widely used in commercial software, we actually laid out 3D giwa tiles on the roof seamlessly, which generated more realistic looks. Through many experiments, we verified that the proposed algorithm can model and render the giwa house at a real time rate.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1113
Author(s):  
Mohammed Asadullah Khan ◽  
Jürgen Kosel

An integrated polymer-based magnetohydrodynamic (MHD) pump that can actuate saline fluids in closed-channel devices is presented. MHD pumps are attractive for lab-on-chip applications, due to their ability to provide high propulsive force without any moving parts. Unlike other MHD devices, a high level of integration is demonstrated by incorporating both laser-induced graphene (LIG) electrodes as well as a NdFeB magnetic-flux source in the NdFeB-polydimethylsiloxane permanent magnetic composite substrate. The effects of transferring the LIG film from polyimide to the magnetic composite substrate were studied. Operation of the integrated magneto hydrodynamic pump without disruptive bubbles was achieved. In the studied case, the pump produces a flow rate of 28.1 µL/min. while consuming ~1 mW power.


2021 ◽  
pp. 104063872110214
Author(s):  
Deepanker Tewari ◽  
David Steward ◽  
Melinda Fasnacht ◽  
Julia Livengood

Chronic wasting disease (CWD) is a prion-mediated, transmissible disease of cervids, including deer ( Odocoileus spp.), which is characterized by spongiform encephalopathy and death of the prion-infected animals. Official surveillance in the United States using immunohistochemistry (IHC) and ELISA entails the laborious collection of lymphoid and/or brainstem tissue after death. New, highly sensitive prion detection methods, such as real-time quaking-induced conversion (RT-QuIC), have shown promise in detecting abnormal prions from both antemortem and postmortem specimens. We compared RT-QuIC with ELISA and IHC for CWD detection utilizing deer retropharyngeal lymph node (RLN) tissues in a diagnostic laboratory setting. The RLNs were collected postmortem from hunter-harvested animals. RT-QuIC showed 100% sensitivity and specificity for 50 deer RLN (35 positive by both IHC and ELISA, 15 negative) included in our study. All deer were also genotyped for PRNP polymorphism. Most deer were homozygous at codons 95, 96, 116, and 226 (QQ/GG/AA/QQ genotype, with frequency 0.86), which are the codons implicated in disease susceptibility. Heterozygosity was noticed in Pennsylvania deer, albeit at a very low frequency, for codons 95GS (0.06) and 96QH (0.08), but deer with these genotypes were still found to be CWD prion-infected.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3956
Author(s):  
Youngsun Kong ◽  
Hugo F. Posada-Quintero ◽  
Ki H. Chon

The subjectiveness of pain can lead to inaccurate prescribing of pain medication, which can exacerbate drug addiction and overdose. Given that pain is often experienced in patients’ homes, there is an urgent need for ambulatory devices that can quantify pain in real-time. We implemented three time- and frequency-domain electrodermal activity (EDA) indices in our smartphone application that collects EDA signals using a wrist-worn device. We then evaluated our computational algorithms using thermal grill data from ten subjects. The thermal grill delivered a level of pain that was calibrated for each subject to be 8 out of 10 on a visual analog scale (VAS). Furthermore, we simulated the real-time processing of the smartphone application using a dataset pre-collected from another group of fifteen subjects who underwent pain stimulation using electrical pulses, which elicited a VAS pain score level 7 out of 10. All EDA features showed significant difference between painless and pain segments, termed for the 5-s segments before and after each pain stimulus. Random forest showed the highest accuracy in detecting pain, 81.5%, with 78.9% sensitivity and 84.2% specificity with leave-one-subject-out cross-validation approach. Our results show the potential of a smartphone application to provide near real-time objective pain detection.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 689
Author(s):  
Tom Springer ◽  
Elia Eiroa-Lledo ◽  
Elizabeth Stevens ◽  
Erik Linstead

As machine learning becomes ubiquitous, the need to deploy models on real-time, embedded systems will become increasingly critical. This is especially true for deep learning solutions, whose large models pose interesting challenges for target architectures at the “edge” that are resource-constrained. The realization of machine learning, and deep learning, is being driven by the availability of specialized hardware, such as system-on-chip solutions, which provide some alleviation of constraints. Equally important, however, are the operating systems that run on this hardware, and specifically the ability to leverage commercial real-time operating systems which, unlike general purpose operating systems such as Linux, can provide the low-latency, deterministic execution required for embedded, and potentially safety-critical, applications at the edge. Despite this, studies considering the integration of real-time operating systems, specialized hardware, and machine learning/deep learning algorithms remain limited. In particular, better mechanisms for real-time scheduling in the context of machine learning applications will prove to be critical as these technologies move to the edge. In order to address some of these challenges, we present a resource management framework designed to provide a dynamic on-device approach to the allocation and scheduling of limited resources in a real-time processing environment. These types of mechanisms are necessary to support the deterministic behavior required by the control components contained in the edge nodes. To validate the effectiveness of our approach, we applied rigorous schedulability analysis to a large set of randomly generated simulated task sets and then verified the most time critical applications, such as the control tasks which maintained low-latency deterministic behavior even during off-nominal conditions. The practicality of our scheduling framework was demonstrated by integrating it into a commercial real-time operating system (VxWorks) then running a typical deep learning image processing application to perform simple object detection. The results indicate that our proposed resource management framework can be leveraged to facilitate integration of machine learning algorithms with real-time operating systems and embedded platforms, including widely-used, industry-standard real-time operating systems.


Sign in / Sign up

Export Citation Format

Share Document