scholarly journals Application of Computational Intelligence Methods for the Automated Identification of Paper-Ink Samples Based on LIBS

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3670 ◽  
Author(s):  
Krzysztof Rzecki ◽  
Tomasz Sośnicki ◽  
Mateusz Baran ◽  
Michał Niedźwiecki ◽  
Małgorzata Król ◽  
...  

Laser-induced breakdown spectroscopy (LIBS) is an important analysis technique with applications in many industrial branches and fields of scientific research. Nowadays, the advantages of LIBS are impaired by the main drawback in the interpretation of obtained spectra and identification of observed spectral lines. This procedure is highly time-consuming since it is essentially based on the comparison of lines present in the spectrum with the literature database. This paper proposes the use of various computational intelligence methods to develop a reliable and fast classification of quasi-destructively acquired LIBS spectra into a set of predefined classes. We focus on a specific problem of classification of paper-ink samples into 30 separate, predefined classes. For each of 30 classes (10 pens of each of 5 ink types combined with 10 sheets of 5 paper types plus empty pages), 100 LIBS spectra are collected. Four variants of preprocessing, seven classifiers (decision trees, random forest, k-nearest neighbor, support vector machine, probabilistic neural network, multi-layer perceptron, and generalized regression neural network), 5-fold stratified cross-validation, and a test on an independent set (for methods evaluation) scenarios are employed. Our developed system yielded an accuracy of 99.08%, obtained using the random forest classifier. Our results clearly demonstrates that machine learning methods can be used to identify the paper-ink samples based on LIBS reliably at a faster rate.

Author(s):  
Krzysztof Rzecki ◽  
Tomasz Sośnicki ◽  
Mateusz Baran ◽  
Michał Niedźwiecki ◽  
Małgorzata Król ◽  
...  

Laser-induced breakdown spectroscopy (LIBS) is an important analysis technique with applications in many industrial branches and fields of scientific research. Nowadays, the advantages of LIBS are impaired by the main drawback in the analysis of collected data. This procedure is essentially based on the comparison of lines present in the spectrum with a literature database. This paper proposes the use of various computational intelligence methods to develop a reliable and fast classification of non-destructively acquired LIBS spectra into a set of predefined classes. We focus on a specific problem of classification of paper-ink samples into 30 separate, predefined classes. For each of 30 classes (10 pens of each of 5 ink types combined with 10 sheets of 5 paper types plus empty pages) 100 LIBS spectra are collected. Four variants of preprocessing, seven classifiers (Decision trees, Random forest, k-Nearest Neighbour, Support Vector Machine, Probabilistic Neural Network, Multi-Layer Perceptron, and Generalized Regression Neural Network), 5-fold stratified cross-validation and test on an independent set (for methods evaluation) scenarios are employed. Our developed system yielded an accuracy of 99.08% with average classification time of about 0.12 s is obtained using the random forest classifier. Our results clearly demonstrates that machine learning methods can be used to identify the paper-ink samples based on LIBS reliably at a faster rate.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 2005 ◽  
Author(s):  
Jiaying Deng ◽  
Wenhai Zhang ◽  
Xiaomei Yang

To avoid power supply hazards caused by cable failures, this paper presents an approach of incipient cable failure recognition and classification based on variational mode decomposition (VMD) and a convolutional neural network (CNN). By using VMD, the original current signal is decomposed into seven modes with different center frequencies. Then, 42 features are extracted for the seven modes and used to construct a feature vector as input of the CNN to classify incipient cable failure through deep learning. Compared with using the original signals directly as the CNN input, the proposed approach is more efficient and robust. Experiments on different classifiers, namely, the decision tree (DT), K-nearest neighbor (KNN), BP neural network (BP) and support vector machine (SVM), and show that the CNN outperforms the other classifiers in terms of accuracy.


Author(s):  
Kristiawan Kristiawan ◽  
Andreas Widjaja

Abstract  — The application of machine learning technology in various industrial fields is currently developing rapidly, including in the retail industry. This study aims to find the most accurate algorithmic model so that it can be used to help retailers choose a store location more precisely. By using several methods such as Pearson Correlation, Chi-Square Features, Recursive Feature Elimination and Tree-based to select features (predictive variables). These features are then used to train and build models using 6 different classification algorithms such as Logistic Regression, K Nearest Neighbor (KNN), Decision Tree, Random Forest, Support Vector Machine (SVM) and Neural Network to classify whether a location is recommended or not as a new store location. Keywords— Application of Machine Learning, Pearson Correlation, Random Forest, Neural Network, Logistic Regression.


Computers ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 77 ◽  
Author(s):  
Muhammad Azfar Firdaus Azlah ◽  
Lee Suan Chua ◽  
Fakhrul Razan Rahmad ◽  
Farah Izana Abdullah ◽  
Sharifah Rafidah Wan Alwi

Plant systematics can be classified and recognized based on their reproductive system (flowers) and leaf morphology. Neural networks is one of the most popular machine learning algorithms for plant leaf classification. The commonly used neutral networks are artificial neural network (ANN), probabilistic neural network (PNN), convolutional neural network (CNN), k-nearest neighbor (KNN) and support vector machine (SVM), even some studies used combined techniques for accuracy improvement. The utilization of several varying preprocessing techniques, and characteristic parameters in feature extraction appeared to improve the performance of plant leaf classification. The findings of previous studies are critically compared in terms of their accuracy based on the applied neural network techniques. This paper aims to review and analyze the implementation and performance of various methodologies on plant classification. Each technique has its advantages and limitations in leaf pattern recognition. The quality of leaf images plays an important role, and therefore, a reliable source of leaf database must be used to establish the machine learning algorithm prior to leaf recognition and validation.


Author(s):  
Dana Bani-Hani ◽  
Pruthak Patel ◽  
Tasneem Alshaikh

Diabetes is a serious, chronic disease that has been seeing a rise in the number of cases and prevalence over the past few decades. It can lead to serious complications and can increase the overall risk of dying prematurely. Data-oriented prediction models have become effective tools that help medical decision-making and diagnoses in which the use of machine learning in medicine has increased substantially. This research introduces the Recursive General Regression Neural Network Oracle (RGRNN Oracle) and is applied on the Pima Indians Diabetes dataset for the prediction and diagnosis of diabetes. The R-GRNN Oracle (Bani-Hani, 2017) is an enhancement to the GRNN Oracle developed by Masters et al. in 1998, in which the recursive model is created of two oracles: one within the other. Several classifiers, along with the R-GRNN Oracle and the GRNN Oracle, are applied to the dataset, they are: Support Vector Machine (SVM), Multilayer Perceptron (MLP), Probabilistic Neural Network (PNN), Gaussian Naïve Bayes (GNB), K-Nearest Neighbor (KNN), and Random Forest (RF). Genetic Algorithm (GA) was used for feature selection as well as the hyperparameter optimization of SVM and MLP, and Grid Search (GS) was used to optimize the hyperparameters of KNN and RF. The performance metrics accuracy, AUC, sensitivity, and specificity were recorded for each classifier.


2018 ◽  
Vol 20 (4) ◽  
pp. 917-933 ◽  
Author(s):  
Fereshteh Modaresi ◽  
Shahab Araghinejad ◽  
Kumars Ebrahimi

Abstract Monthly streamflow forecasting plays an important role in water resources management, especially for dam operation. In this paper, an approach of model fusion technique named selected model fusion (SMF) is applied and assessed under two strategies of model selection in order to improve the accuracy of streamflow forecasting. The two strategies of SMF are: fusion of the outputs of best individual forecasting models (IFMs) selected by dendrogram analysis (S1), and fusion of the best outputs of all IFMs resulting from an ordered selection algorithm (S2). In both strategies, five data-driven models including: artificial neural network, generalized regression neural network, least square-support vector regression, K-nearest neighbor regression, and multiple linear regression with optimized structure are performed as IFMs. The SMF strategies are applied for forecasting the monthly inflow to Karkheh reservoir, Iran, owning various patterns between predictor and predicted variables in different months. Results show that applying SMF approach based on both strategies results in more accurate forecasts in comparison with fusion of all IFMs outputs (S3), as the benchmark. However, comparison of the two SMF strategies reveals that the implementation of strategy (S2) considerably improves the accuracy of forecasts than strategy (S1) as well as the best IFM results (S4) in all months.


Author(s):  
Abdulraheem Abdul ◽  
Rafiu M. Isiaka ◽  
Ronke S. Babatunde ◽  
Jumoke F. Ajao

Aims: This work aim is to develop an enhanced predictive system for Coronary Heart Disease (CHD). Study Design: Synthetic Minority Oversampling Technique and Random Forest. Methodology: The Framingham heart disease dataset was used, which was collected from a study in Framingham, Massachusetts, the data was cleaned, normalized, rebalanced. Classifiers such as random forest, artificial neural network, naïve bayes, logistic regression, k-nearest neighbor and support vector machine were used for classification. Results: Random Forest outperformed other classifiers with an accuracy of 98%, a sensitivity of 99% and a precision of 95.8%. Feature selection was employed for better classification, but  no significant improvement was recorded on the performance of the classifier with feature selection. Train test split also performed better that cross validation. Conclusion: Random Forest is recommended for research in Coronary Heart Disease prediction domain.


Sign in / Sign up

Export Citation Format

Share Document