scholarly journals Perbandingan Algoritma Machine Learning dalam Menilai Sebuah Lokasi Toko Ritel

Author(s):  
Kristiawan Kristiawan ◽  
Andreas Widjaja

Abstract  — The application of machine learning technology in various industrial fields is currently developing rapidly, including in the retail industry. This study aims to find the most accurate algorithmic model so that it can be used to help retailers choose a store location more precisely. By using several methods such as Pearson Correlation, Chi-Square Features, Recursive Feature Elimination and Tree-based to select features (predictive variables). These features are then used to train and build models using 6 different classification algorithms such as Logistic Regression, K Nearest Neighbor (KNN), Decision Tree, Random Forest, Support Vector Machine (SVM) and Neural Network to classify whether a location is recommended or not as a new store location. Keywords— Application of Machine Learning, Pearson Correlation, Random Forest, Neural Network, Logistic Regression.

MATICS ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 21-27
Author(s):  
Via Ardianto Nugroho ◽  
Derry Pramono Adi ◽  
Achmad Teguh Wibowo ◽  
MY Teguh Sulistyono ◽  
Agustinus Bimo Gumelar

Pada industri jasa pelayanan peti kemas, Terminal Nilam merupakan pelanggan dari PT. BIMA, yang secara khusus bergerak dibidang jasa perbaikan dan perawatan alat berat. Terminal ini menjadi sentral tempat untuk melakukan aktifitas bongkar muat peti kemas domestik yang memiliki empat buah container crane untuk melayani dua kapal. Proses perawatan alat berat seperti container crane yang selama ini beroperasi, agaknya kurang memperhatikan data pengelompokkan atau klasifikasi jenis perawatan yang dibutuhkan oleh alat berat tersebut. Di kemudian hari, alat berat dapat menunjukkan kinerja yang tidak maksimal bahkan dapat berujung pada kecelakaan kerja. Selain itu, kelalaian perawatan container crane juga dapat menyebabkan pembengkakan biaya perawatan lanjut. Target produksi bongkar muat dapat berkurang dan juga keterlambatan jadwal kapal sandar sangat mungkin terjadi. Metode pembelajaran menggunakan mesin atau biasa disebut dengan Machine Learning (ML), dengan mudah dapat melenyapkan kemungkinan-kemungkinan tersebut. ML dalam penelitian ini, kami rancang agar bekerja dengan mengidentifikasi lalu mengelompokkan jenis perawatan container crane yang sesuai, yaitu ringan atau berat. Metode ML yang pilih untuk digunakan dalam penelitian ini yaitu Random Forest, Support Vector Machine, k-Nearest Neighbor, Naïve Bayes, Logistic Regression, J48, dan Decision Tree. Penelitian ini menunjukkan keberhasilan ML model tree dalam melakukan pembelajaran jenis data perawatan container crane (numerik dan kategoris), dengan J48 menunjukkan performa terbaik dengan nilai akurasi dan nilai ROC-AUC mencapai 99,1%. Pertimbangan klasifikasi kami lakukan dengan mengacu kepada tanggal terakhir perawatan, hour meter, breakdown, shutdown, dan sparepart.


Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1106
Author(s):  
Yan Hu ◽  
Lijia Xu ◽  
Peng Huang ◽  
Xiong Luo ◽  
Peng Wang ◽  
...  

A rapid and nondestructive tea classification method is of great significance in today’s research. This study uses fluorescence hyperspectral technology and machine learning to distinguish Oolong tea by analyzing the spectral features of tea in the wavelength ranging from 475 to 1100 nm. The spectral data are preprocessed by multivariate scattering correction (MSC) and standard normal variable (SNV), which can effectively reduce the impact of baseline drift and tilt. Then principal component analysis (PCA) and t-distribution random neighborhood embedding (t-SNE) are adopted for feature dimensionality reduction and visual display. Random Forest-Recursive Feature Elimination (RF-RFE) is used for feature selection. Decision Tree (DT), Random Forest Classification (RFC), K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) are used to establish the classification model. The results show that MSC-RF-RFE-SVM is the best model for the classification of Oolong tea in which the accuracy of the training set and test set is 100% and 98.73%, respectively. It can be concluded that fluorescence hyperspectral technology and machine learning are feasible to classify Oolong tea.


Author(s):  
Paul Morrison ◽  
Maxwell Dixon ◽  
Arsham Sheybani ◽  
Bahareh Rahmani

The purpose of this retrospective study is to measure machine learning models' ability to predict glaucoma drainage device failure based on demographic information and preoperative measurements. The medical records of 165 patients were used. Potential predictors included the patients' race, age, sex, preoperative intraocular pressure (IOP), preoperative visual acuity, number of IOP-lowering medications, and number and type of previous ophthalmic surgeries. Failure was defined as final IOP greater than 18 mm Hg, reduction in intraocular pressure less than 20% from baseline, or need for reoperation unrelated to normal implant maintenance. Five classifiers were compared: logistic regression, artificial neural network, random forest, decision tree, and support vector machine. Recursive feature elimination was used to shrink the number of predictors and grid search was used to choose hyperparameters. To prevent leakage, nested cross-validation was used throughout. With a small amount of data, the best classfier was logistic regression, but with more data, the best classifier was the random forest.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012045
Author(s):  
Aimin Li ◽  
Meng Fan ◽  
Guangduo Qin

Abstract There are many traditional methods available for water body extraction based on remote sensing images, such as normalised difference water index (NDWI), modified NDWI (MNDWI), and the multi-band spectrum method, but the accuracy of these methods is limited. In recent years, machine learning algorithms have developed rapidly and been applied widely. Using Landsat-8 images, models such as decision tree, logistic regression, a random forest, neural network, support vector method (SVM), and Xgboost were adopted in the present research within machine learning algorithms. Based on this, through cross validation and a grid search method, parameters were determined for each model.Moreover, the merits and demerits of several models in water body extraction were discussed and a comparative analysis was performed with three methods for determining thresholds in the traditional NDWI. The results show that the neural network has excellent performances and is a stable model, followed by the SVM and the logistic regression algorithm. Furthermore, the ensemble algorithms including the random forest and Xgboost were affected by sample distribution and the model of the decision tree returned the poorest performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Abolfazl Mehbodniya ◽  
Izhar Alam ◽  
Sagar Pande ◽  
Rahul Neware ◽  
Kantilal Pitambar Rane ◽  
...  

Healthcare sector is one of the prominent sectors in which a lot of data can be collected not only in terms of health but also in terms of finances. Major frauds happen in the healthcare sector due to the utilization of credit cards as the continuous enhancement of electronic payments, and credit card fraud monitoring has been a challenge in terms of financial condition to the different service providers. Hence, continuous enhancement is necessary for the system for detecting frauds. Various fraud scenarios happen continuously, which has a massive impact on financial losses. Many technologies such as phishing or virus-like Trojans are mostly used to collect sensitive information about credit cards and their owner details. Therefore, efficient technology should be there for identifying the different types of fraudulent conduct in credit cards. In this paper, various machine learning and deep learning approaches are used for detecting frauds in credit cards and different algorithms such as Naive Bayes, Logistic Regression, K-Nearest Neighbor (KNN), Random Forest, and the Sequential Convolutional Neural Network are skewed for training the other standard and abnormal features of transactions for detecting the frauds in credit cards. For evaluating the accuracy of the model, publicly available data are used. The different algorithm results visualized the accuracy as 96.1%, 94.8%, 95.89%, 97.58%, and 92.3%, corresponding to various methodologies such as Naive Bayes, Logistic Regression, K-Nearest Neighbor (KNN), Random Forest, and the Sequential Convolutional Neural Network, respectively. The comparative analysis visualized that the KNN algorithm generates better results than other approaches.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 771
Author(s):  
Toshiya Arakawa

Mammalian behavior is typically monitored by observation. However, direct observation requires a substantial amount of effort and time, if the number of mammals to be observed is sufficiently large or if the observation is conducted for a prolonged period. In this study, machine learning methods as hidden Markov models (HMMs), random forests, support vector machines (SVMs), and neural networks, were applied to detect and estimate whether a goat is in estrus based on the goat’s behavior; thus, the adequacy of the method was verified. Goat’s tracking data was obtained using a video tracking system and used to estimate whether they, which are in “estrus” or “non-estrus”, were in either states: “approaching the male”, or “standing near the male”. Totally, the PC of random forest seems to be the highest. However, The percentage concordance (PC) value besides the goats whose data were used for training data sets is relatively low. It is suggested that random forest tend to over-fit to training data. Besides random forest, the PC of HMMs and SVMs is high. However, considering the calculation time and HMM’s advantage in that it is a time series model, HMM is better method. The PC of neural network is totally low, however, if the more goat’s data were acquired, neural network would be an adequate method for estimation.


2020 ◽  
Vol 10 (18) ◽  
pp. 6417 ◽  
Author(s):  
Emanuele Lattanzi ◽  
Giacomo Castellucci ◽  
Valerio Freschi

Most road accidents occur due to human fatigue, inattention, or drowsiness. Recently, machine learning technology has been successfully applied to identifying driving styles and recognizing unsafe behaviors starting from in-vehicle sensors signals such as vehicle and engine speed, throttle position, and engine load. In this work, we investigated the fusion of different external sensors, such as a gyroscope and a magnetometer, with in-vehicle sensors, to increase machine learning identification of unsafe driver behavior. Starting from those signals, we computed a set of features capable to accurately describe the behavior of the driver. A support vector machine and an artificial neural network were then trained and tested using several features calculated over more than 200 km of travel. The ground truth used to evaluate classification performances was obtained by means of an objective methodology based on the relationship between speed, and lateral and longitudinal acceleration of the vehicle. The classification results showed an average accuracy of about 88% using the SVM classifier and of about 90% using the neural network demonstrating the potential capability of the proposed methodology to identify unsafe driver behaviors.


2021 ◽  
Author(s):  
Chen Bai ◽  
Yu-Peng Chen ◽  
Adam Wolach ◽  
Lisa Anthony ◽  
Mamoun Mardini

BACKGROUND Frequent spontaneous facial self-touches, predominantly during outbreaks, have the theoretical potential to be a mechanism of contracting and transmitting diseases. Despite the recent advent of vaccines, behavioral approaches remain an integral part of reducing the spread of COVID-19 and other respiratory illnesses. Real-time biofeedback of face touching can potentially mitigate the spread of respiratory diseases. The gap addressed in this study is the lack of an on-demand platform that utilizes motion data from smartwatches to accurately detect face touching. OBJECTIVE The aim of this study was to utilize the functionality and the spread of smartwatches to develop a smartwatch application to identifying motion signatures that are mapped accurately to face touching. METHODS Participants (n=10, 50% women, aged 20-83) performed 10 physical activities classified into: face touching (FT) and non-face touching (NFT) categories, in a standardized laboratory setting. We developed a smartwatch application on Samsung Galaxy Watch to collect raw accelerometer data from participants. Then, data features were extracted from consecutive non-overlapping windows varying from 2-16 seconds. We examined the performance of state-of-the-art machine learning methods on face touching movements recognition (FT vs NFT) and individual activity recognition (IAR): logistic regression, support vector machine, decision trees and random forest. RESULTS Machine learning models were accurate in recognizing face touching categories; logistic regression achieved the best performance across all metrics (Accuracy: 0.93 +/- 0.08, Recall: 0.89 +/- 0.16, Precision: 0.93 +/- 0.08, F1-score: 0.90 +/- 0.11, AUC: 0.95 +/- 0.07) at the window size of 5 seconds. IAR models resulted in lower performance; the random forest classifier achieved the best performance across all metrics (Accuracy: 0.70 +/- 0.14, Recall: 0.70 +/- 0.14, Precision: 0.70 +/- 0.16, F1-score: 0.67 +/- 0.15) at the window size of 9 seconds. CONCLUSIONS Wearable devices, powered with machine learning, are effective in detecting facial touches. This is highly significant during respiratory infection outbreaks, as it has a great potential to refrain people from touching their faces and potentially mitigate the possibility of transmitting COVID-19 and future respiratory diseases.


2021 ◽  
Author(s):  
Jerome Asedegbega ◽  
Oladayo Ayinde ◽  
Alexander Nwakanma

Abstract Several computer-aided techniques have been developed in recent past to improve interpretational accuracy of subsurface geology. This paradigm shift has provided tremendous success in variety of Machine Learning Application domains and help for better feasibility study in reservoir evaluation using multiple classification techniques. Facies classification is an essential subsurface exploration task as sedimentary facies reflect associated physical, chemical, and biological conditions that formation unit experienced during sedimentation activity. This study however, employed formation samples for facies classification using Machine Learning (ML) techniques and classified different facies from well logs in seven (7) wells of the PORT Field, Offshore Niger Delta. Six wells were concatenated during data preparation and trained using supervised ML algorithms before validating the models by blind testing on one well log to predict discrete facies groups. The analysis started with data preparation and examination where various features of the available well data were conditioned. For the model building and performance, support vector machine, random forest, decision tree, extra tree, neural network (multilayer preceptor), k-nearest neighbor and logistic regression model were built after dividing the data sets into training, test, and blind test well data. Results of metric score for the blind test well estimated for the various models using Jaccard index and F1-score indicated 0.73 and 0.82 for support vector machine, 0.38 and 0.54 for random forest, 0.78 and 0.83 for extra tree, 0.91 and 0.95 for k-nearest neighbor, 0.41 and 0.56 for decision tree, 0.63 and 0.74 for logistic regression, 0.55 and 0.68 for neural network, respectively. The efficiency of ML techniques for enhancing the prediction accuracy and decreasing the procedure time and their approach toward the data, makes it importantly desirable to recommend them in subsurface facies classification analysis.


Sign in / Sign up

Export Citation Format

Share Document