scholarly journals Management and Monitoring of IoT Devices Using Blockchain

Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 856 ◽  
Author(s):  
Kristián Košťál ◽  
Pavol Helebrandt ◽  
Matej Belluš ◽  
Michal Ries ◽  
Ivan Kotuliak

Nowadays, we are surrounded by a large number of IoT (Internet of Things) devices and sensors. These devices are designed to make life easier and more comfortable. Blockchain technology, especially its mass application, is becoming a term number one. Adoption of blockchain into enterprise networks still has a few challenges that need to be tackled. Utilizing blockchain can bring increased security and efficiency of network maintenance. The key feature of the blockchain, immutability, brings resistance to unauthorized modifications. The whole history of device configuration changes is stored in the blockchain, hence recovery after incidents is very straightforward. This paper extends our previous studies. We are introducing an improved architecture for management and monitoring of IoT devices using a private blockchain. The majority of the system is built on a chaincode, which handles CRUD (Create, Read, Update, Delete) operations as well as encryption and access control. Device configuration files are stored in the blockchain. When a modification occurs, the device downloads a new configuration in a simple manner. The chaincode receives notification whether setup was successful and this history is available for administrators. Our results show that such a system is possible and dissemination of configuration changes to IoT devices can be secured by the blockchain. The key novelty of our solution is a distributed management of configuration files of IoT devices in enterprise networks utilizing blockchain technology. This is essentially improving security and storage options for configurations in the blockchain.

Author(s):  
P.Hemalatha , Et. al.

Blockchain and Internet of Things (IoT) technologies are used in many domains, predominantly for electronic-healthcare. Here, IoT devices has the ability to provide real-time sensor data from patients to get processed and analyzed. As a single point of failure, mistrust, data manipulation and tampering, and privacy avoidance may all occur as a result of such a method. Through offering shared computing and storage for IoT data, blockchain can help solve such issues.Maintaining and sharing Medical data is necessary here.If there occurs loss of confidence means it threatens the medical data and loss of integrity creates impact on the life of patient. So, the first objective is to protect the medical records. Also, a central server to the records will pretend the hackers to attack and continuous fetching is difficult.Therefore, combining Blockchain and IoT will be a threat breaker for computerized medical records.


2021 ◽  
Vol 2 (4) ◽  
pp. 236-245
Author(s):  
Joy Iong Zong Chen ◽  
Kong-Long Lai

In the history of device computing, Internet of Things (IoT) is one of the fastest growing field that facing many security challenges. The effective efforts should have been made to address the security and privacy issues in IoT networks. The IoT devices are basically resource control device which provide routine attract impression for cyber attackers. The IoT participation nodes are increasing rapidly with more resource constrained that creating more challenging conditions in the real time. The existing methods provide an ineffective response to the tasks for effective IoT device. Also, it is an insufficient to involve the complete security and safety spectrum of the IoT networks. Because of the existing algorithms are not enriched to secure IoT bionetwork in the real time environment. The existing system is not enough to detect the proxy to the authorized person in the embedding devices. Also, those methods are believed in single model domain. Therefore, the effectiveness is dropping for further multimodal domain such as combination of behavioral and physiological features. The embedding intelligent technique will be securitizing for the IoT devices and networks by deep learning (DL) techniques. The DL method is addressing different security and safety problems arise in real time environment. This paper is highlighting hybrid DL techniques with Reinforcement Learning (RL) for the better performance during attack and compared with existing one. Also, here we discussed about DL combined with RL of several techniques and identify the higher accuracy algorithm for security solutions. Finally, we discuss the future direction of decision making of DL based IoT security system.


Author(s):  
Bhanu Chander

The Internet of Things (IoT) pictures an entire connected world, where things or devices are proficient to exchange a few measured data words and interrelate with additional things. This turns for a feasible digital demonstration of the existent world. Nonetheless, nearly all IoT things are simple to mistreat or compromise. Moreover, IoT devices are restricted in computation, power, and storage, so they are more vulnerable to bugs and attacks than endpoint devices like smartphones, tablets, and computers. Blockchain has remarkable interest from academics and industry because of its salient features including reduced dependencies on third parties, cryptographic security, immutability, decentralized nature, distributed nature, and anonymity. In the current scenario, blockchain with its features provides an anonymous framework for IoT. This chapter produces comprehensive knowledge of IoTs, Blockchain knowledge, security issues, Blockchain integration with IoT (BIoT), consensus, mining, message validation mechanisms, challenges, a solution, and future directions.


Circular ◽  
1957 ◽  
Author(s):  
Fred Forrest Lawrence ◽  
C.E. Nordeen ◽  
H.L. Pumphrey

Author(s):  
Jaber Almutairi ◽  
Mohammad Aldossary

AbstractRecently, the number of Internet of Things (IoT) devices connected to the Internet has increased dramatically as well as the data produced by these devices. This would require offloading IoT tasks to release heavy computation and storage to the resource-rich nodes such as Edge Computing and Cloud Computing. Although Edge Computing is a promising enabler for latency-sensitive related issues, its deployment produces new challenges. Besides, different service architectures and offloading strategies have a different impact on the service time performance of IoT applications. Therefore, this paper presents a novel approach for task offloading in an Edge-Cloud system in order to minimize the overall service time for latency-sensitive applications. This approach adopts fuzzy logic algorithms, considering application characteristics (e.g., CPU demand, network demand and delay sensitivity) as well as resource utilization and resource heterogeneity. A number of simulation experiments are conducted to evaluate the proposed approach with other related approaches, where it was found to improve the overall service time for latency-sensitive applications and utilize the edge-cloud resources effectively. Also, the results show that different offloading decisions within the Edge-Cloud system can lead to various service time due to the computational resources and communications types.


2021 ◽  
Vol 14 (2) ◽  
pp. 1-45
Author(s):  
Danielle Bragg ◽  
Naomi Caselli ◽  
Julie A. Hochgesang ◽  
Matt Huenerfauth ◽  
Leah Katz-Hernandez ◽  
...  

Sign language datasets are essential to developing many sign language technologies. In particular, datasets are required for training artificial intelligence (AI) and machine learning (ML) systems. Though the idea of using AI/ML for sign languages is not new, technology has now advanced to a point where developing such sign language technologies is becoming increasingly tractable. This critical juncture provides an opportunity to be thoughtful about an array of Fairness, Accountability, Transparency, and Ethics (FATE) considerations. Sign language datasets typically contain recordings of people signing, which is highly personal. The rights and responsibilities of the parties involved in data collection and storage are also complex and involve individual data contributors, data collectors or owners, and data users who may interact through a variety of exchange and access mechanisms. Deaf community members (and signers, more generally) are also central stakeholders in any end applications of sign language data. The centrality of sign language to deaf culture identity, coupled with a history of oppression, makes usage by technologists particularly sensitive. This piece presents many of these issues that characterize working with sign language AI datasets, based on the authors’ experiences living, working, and studying in this space.


Logistics ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 37
Author(s):  
Serkan Alacam ◽  
Asli Sencer

In the global trucking industry, vertical collaboration between shippers and carriers is attained by intermediaries, called brokers. Brokers organize carriers for a shipper in accordance with its quality and price requirements, and support carriers to collaborate horizontally by sharing a large distribution order from a shipper. Brokers also act as trustees, preventing the passing of private information of any party to the others. Despite these benefits, intermediaries in the trucking industry are involved in several sustainability problems, including high costs, high levels of carbon emissions, high percentages of empty miles, low-capacity utilizations, and driver shortages. Several studies have acknowledged the importance of improving collaboration to address these problems. Obviously, the major concern of brokers is not collaboration, but rather to optimize their own gains. This paper investigates the potential of blockchain technology to improve collaboration in the trucking industry, by eliminating brokers while preserving their responsibilities as organizers and trustees. This paper extends the transportation control tower concept from the logistics literature, and presents a system architecture for its implementation through smart contracts on a blockchain network. In the proposed system, the scalability and privacy of trucking operations are ensured through integration with privacy-preserving off-chain computation and storage solutions (running outside of the blockchain). The potential of this design artifact for fostering collaboration in the trucking industry was evaluated by both blockchain technology experts and trucking industry professionals.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1339 ◽  
Author(s):  
Hasan Islam ◽  
Dmitrij Lagutin ◽  
Antti Ylä-Jääski ◽  
Nikos Fotiou ◽  
Andrei Gurtov

The Constrained Application Protocol (CoAP) is a specialized web transfer protocol which is intended to be used for constrained networks and devices. CoAP and its extensions (e.g., CoAP observe and group communication) provide the potential for developing novel applications in the Internet-of-Things (IoT). However, a full-fledged CoAP-based application may require significant computing capability, power, and storage capacity in IoT devices. To address these challenges, we present the design, implementation, and experimentation with the CoAP handler which provides transparent CoAP services through the ICN core network. In addition, we demonstrate how the CoAP traffic over an ICN network can unleash the full potential of the CoAP, shifting both overhead and complexity from the (constrained) endpoints to the ICN network. The experiments prove that the CoAP Handler helps to decrease the required computation complexity, communication overhead, and state management of the CoAP server.


2021 ◽  
pp. 36-40
Author(s):  
D.A. Semenov

This article helps to understand what a forklift is, what it was and what it is at the moment. In the text below, a brief history of the appearance of the loader is well traced, the constructive component and its features are described. The main aspects of the development of a loader in the system of lifting and transporting machines and storage facilities are highlighted. The current trends in the development of forklifts are summarized, an analysis of the market of European and domestic consumers is provided and a conclusion about popular manufacturers is formulated. The information about modern design solutions for machines of this type was also not spared, the principles of operation were described, and also its own design-parametric model of a forklift was proposed, which is able to make work in warehouses more economical and profitable. In the conclusion, the main theses about the modernized machine are formulated, which can subsequently give an impetus to the development of automated control on domestically produced loaders. Keywords: forklift, modernization, improvement, lifting and transport equipment


Sign in / Sign up

Export Citation Format

Share Document