scholarly journals Monitoring and Securing the Healthcare Data Harnessing IOT and Blockchain Technology

Author(s):  
P.Hemalatha , Et. al.

Blockchain and Internet of Things (IoT) technologies are used in many domains, predominantly for electronic-healthcare. Here, IoT devices has the ability to provide real-time sensor data from patients to get processed and analyzed. As a single point of failure, mistrust, data manipulation and tampering, and privacy avoidance may all occur as a result of such a method. Through offering shared computing and storage for IoT data, blockchain can help solve such issues.Maintaining and sharing Medical data is necessary here.If there occurs loss of confidence means it threatens the medical data and loss of integrity creates impact on the life of patient. So, the first objective is to protect the medical records. Also, a central server to the records will pretend the hackers to attack and continuous fetching is difficult.Therefore, combining Blockchain and IoT will be a threat breaker for computerized medical records.

2018 ◽  
Author(s):  
Mian Zhang ◽  
Yuhong Ji

A problem facing healthcare record systems throughout the world is how to share the medical data with more stakeholders for various purposes without sacrificing data privacy and integrity. Blockchain, operating in a state of consensus, is the underpinning technology that maintains the Bitcoin transaction ledger. Blockchain as a promising technology to manage the transactions has been gaining popularity in the domain of healthcare. Blockchain technology has the potential of securely, privately, and comprehensively manage patient health records. In this work, we discuss the latest status of blockchain technology and how it could solve the current issues in healthcare systems. We evaluate the blockchain technology from the multiple perspectives around healthcare data, including privacy, security, control, and storage. We review the current projects and researches of blockchain in the domain of healthcare records and provide the insight into the design and construction of next generations of blockchain-based healthcare systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Mary Subaja Christo ◽  
V. Elizabeth Jesi ◽  
Uma Priyadarsini ◽  
V. Anbarasu ◽  
Hridya Venugopal ◽  
...  

Hospital data management is one of the functional parts of operations to store and access healthcare data. Nowadays, protecting these from hacking is one of the most difficult tasks in the healthcare system. As the user’s data collected in the field of healthcare is very sensitive, adequate security measures have to be taken in this field to protect the networks. To maintain security, an effective encryption technology must be utilised. This paper focuses on implementing the elliptic curve cryptography (ECC) technique, a lightweight authentication approach to share the data effectively. Many researches are in place to share the data wirelessly, among which this work uses Electronic Medical Card (EMC) to store the healthcare data. The work discusses two important data security issues: data authentication and data confidentiality. To ensure data authentication, the proposed system employs a secure mechanism to encrypt and decrypt the data with a 512-bit key. Data confidentiality is ensured by using the Blockchain ledger technique which allows ethical users to access the data. Finally, the encrypted data is stored on the edge device. The edge computing technology is used to store the medical reports within the edge network to access the data in a very fast manner. An authenticated user can decrypt the data and process the data at optimum speed. After processing, the updated data is stored in the Blockchain and in the cloud server. This proposed method ensures secure maintenance and efficient retrieval of medical data and reports.


2022 ◽  
pp. 89-103
Author(s):  
Subashini B.

Blockchain and the internet of things (IoT) are progressive technologies that are changing the world with additional special care within the healthcare system. In healthcare, IoT is a remote patient monitoring system that allows IoT devices to collect patient information such as remote monitoring, test results, pharmacy detailsm and medical insurance details, and allows doctors to provide excellent care. In order to facilitate data sharing among different hospitals and other organizations, it is necessary to secure data with caution. Blockchain is a decentralized, distributed, and an immutable digital ledger that records healthcare transactions using peer-to-peer technology in an extremely secure manner. It uses the cloud environment to store the huge amount of data on healthcare. The data generated from IoT devices uses blockchain technology to share medical information being analyzed by healthcare professionals in different hospitals in a secure manner. The objective is to benefit patient monitoring remotely and overcome the problem of information blocking.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Cícero A. Silva ◽  
Gibeon S. Aquino ◽  
Sávio R. M. Melo ◽  
Dannylo J. B. Egídio

The aging of the world’s population and the growth in the number of people with chronic diseases have increased expenses with medical care. Thus, the use of technological solutions has been widely adopted in the medical field to improve the patients’ health. In this context, approaches based on Cloud Computing have been used to store and process the information generated in these solutions. However, using Cloud can create delays that are intolerable for medical applications. Thus, the Fog Computing paradigm emerged as an alternative to overcome this problem, bringing computation and storage closer to the data sources. However, managing medical data stored in Fog is still a challenge. Moreover, characteristics of availability, performance, interoperability, and privacy need to be considered in approaches that aim to explore this problem. So, this article shows a software architecture based on Fog Computing and designed to facilitate the management of medical records. This architecture uses Blockchain concepts to provide the necessary privacy features and to allow Fog Nodes to carry out the authorization process in a distributed way. Finally, this paper describes a case study that evaluates the performance, privacy, and interoperability requirements of the proposed architecture in a home-centered healthcare scenario.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2110
Author(s):  
Desire Ngabo ◽  
Dong Wang ◽  
Celestine Iwendi ◽  
Joseph Henry Anajemba ◽  
Lukman Adewale Ajao ◽  
...  

The recent developments in fog computing architecture and cloud of things (CoT) technology includes data mining management and artificial intelligence operations. However, one of the major challenges of this model is vulnerability to security threats and cyber-attacks against the fog computing layers. In such a scenario, each of the layers are susceptible to different intimidations, including the sensed data (edge layer), computing and processing of data (fog (layer), and storage and management for public users (cloud). The conventional data storage and security mechanisms that are currently in use appear to not be suitable for such a huge amount of generated data in the fog computing architecture. Thus, the major focus of this research is to provide security countermeasures against medical data mining threats, which are generated from the sensing layer (a human wearable device) and storage of data in the cloud database of internet of things (IoT). Therefore, we propose a public-permissioned blockchain security mechanism using elliptic curve crypto (ECC) digital signature that that supports a distributed ledger database (server) to provide an immutable security solution, transaction transparency and prevent the patient records tampering at the IoTs fog layer. The blockchain technology approach also helps to mitigate these issues of latency, centralization, and scalability in the fog model.


2021 ◽  
Author(s):  
HariPriya K ◽  
Brintha NC ◽  
Yogesh C K

Security is a major concern in every technology that is introduced newly to facilitate the existing mechanism for better maintenance and handling. This is also the case in electronic health records. The data of the hospitals and the associated patients gets digital in the past few decades. The data is stored in the cloud for various reasons such as convenience of the participating entities to access it, easy maintenance. But, with this there also arises various security concerns. It has been observed from the reason studies that blockchain is used as the means of securing the healthcare data in the cloud environment.This study discusses the following. 1) Applications of blockchain in cloud environment, 2) Applications of blockchain in securing healthcare data 3) General issues and security concerns in blockchain technology and what features of block chain makes it suitable for securing health care a nd what features restricts it from using.This work helps the future researchers in getting a deep understanding of the in and out of applying blockchain in cloud and healthcare environment.


Author(s):  
Bhanu Chander

The Internet of Things (IoT) pictures an entire connected world, where things or devices are proficient to exchange a few measured data words and interrelate with additional things. This turns for a feasible digital demonstration of the existent world. Nonetheless, nearly all IoT things are simple to mistreat or compromise. Moreover, IoT devices are restricted in computation, power, and storage, so they are more vulnerable to bugs and attacks than endpoint devices like smartphones, tablets, and computers. Blockchain has remarkable interest from academics and industry because of its salient features including reduced dependencies on third parties, cryptographic security, immutability, decentralized nature, distributed nature, and anonymity. In the current scenario, blockchain with its features provides an anonymous framework for IoT. This chapter produces comprehensive knowledge of IoTs, Blockchain knowledge, security issues, Blockchain integration with IoT (BIoT), consensus, mining, message validation mechanisms, challenges, a solution, and future directions.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 856 ◽  
Author(s):  
Kristián Košťál ◽  
Pavol Helebrandt ◽  
Matej Belluš ◽  
Michal Ries ◽  
Ivan Kotuliak

Nowadays, we are surrounded by a large number of IoT (Internet of Things) devices and sensors. These devices are designed to make life easier and more comfortable. Blockchain technology, especially its mass application, is becoming a term number one. Adoption of blockchain into enterprise networks still has a few challenges that need to be tackled. Utilizing blockchain can bring increased security and efficiency of network maintenance. The key feature of the blockchain, immutability, brings resistance to unauthorized modifications. The whole history of device configuration changes is stored in the blockchain, hence recovery after incidents is very straightforward. This paper extends our previous studies. We are introducing an improved architecture for management and monitoring of IoT devices using a private blockchain. The majority of the system is built on a chaincode, which handles CRUD (Create, Read, Update, Delete) operations as well as encryption and access control. Device configuration files are stored in the blockchain. When a modification occurs, the device downloads a new configuration in a simple manner. The chaincode receives notification whether setup was successful and this history is available for administrators. Our results show that such a system is possible and dissemination of configuration changes to IoT devices can be secured by the blockchain. The key novelty of our solution is a distributed management of configuration files of IoT devices in enterprise networks utilizing blockchain technology. This is essentially improving security and storage options for configurations in the blockchain.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 391
Author(s):  
Dongjun Na ◽  
Sejin Park

As the use of internet of things (IoT) devices increases, the importance of security has increased, because personal and private data such as biometrics, images, photos, and voices can be collected. However, there is a possibility of data leakage or manipulation by monopolizing the authority of the data, since such data are stored in a central server by the centralized structure of IoT devices. Furthermore, such a structure has a potential security problem, caused by an attack on the server due to single point vulnerability. Blockchain’s, through their decentralized structure, effectively solve the single point vulnerability, and their consensus algorithm allows network participants to verify data without any monopolizing. Therefore, blockchain technology becomes an effective solution for solving the security problem of the IoT’s centralized method. However, current blockchain technology is not suitable for IoT devices. Blockchain technology requires large storage space for the endless append-only block storing, and high CPU processing power for performing consensus algorithms, while its opened block access policy exposes private data to the public. In this paper, we propose a decentralized lightweight blockchain, named Fusion Chain, to support IoT devices. First, it solves the storage size issue of the blockchain by using the interplanetary file system (IPFS). Second, it does not require high computational power by using the practical Byzantine fault tolerance (PBFT) consensus algorithm. Third, data privacy is ensured by allowing only authorized users to access data through public key encryption using PKI. Fusion Chain was implemented from scratch written using Node.js and golang. The results show that the proposed Fusion Chain is suitable for IoT devices. According to our experiments, the size of the blockchain dramatically decreased, and only 6% of CPU on an ARM core, and 49 MB of memory, is used on average for the consensus process. It also effectively protects privacy data by using a public key infrastructure (PKI).


Author(s):  
Я.О. Ключка ◽  
О.В. Шматко ◽  
С.П. Євсеєв ◽  
С.В. Милевський

The current situation in the field of health care is considered and the key problems faced by this industry are described. Today, there are two main issues to be addressed in healthcare: data ownership and data security. The patient's medical data is preferably stored in centralized, isolated systems that are incompatible with each other. This situation creates difficulties in terms of timely exchange of medical data and access to them. The lack of data complicates further diagnosis and treatment of the patient. In addition, systems that store medical data are not completely reliable. Third parties can easily access and modify medical data. It is expected that blockchain technology can solve the problems that currently exist in the field of health care. Blockchain technology will create distributed, decentralized systems that will significantly improve the quality of care provided. The paper considers the areas in the field of health care, in which blockchain technology is beginning to develop, as well as related projects. All considered projects can be divided into four areas: supply chain surveillance and fight against counterfeit products, telemedicine, diagnostics, storage and management of medical data. The healthcare sector is developing rapidly and new areas are expected in which the blockchain will be used. Although there are still some problems that need to be overcome for the blockchain to be fully used.


Sign in / Sign up

Export Citation Format

Share Document