scholarly journals Robust Distributed Collaborative Beamforming for Wireless Sensor Networks with Channel Estimation Impairments

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1061 ◽  
Author(s):  
Oussama Smida ◽  
Slim Zaidi ◽  
Sofiène Affes ◽  
Shahrokh Valaee

We propose a new collaborative beamforming (CB) solution robust (i.e., RCB) against major channel estimation impairments over dual-hop transmissions through a wireless sensor network (WSN) of K nodes. The source first sends its signal to the WSN. Then, each node forwards its received signal after multiplying it by a properly selected beamforming weight. The latter aims to minimize the received noise power while maintaining the desired power equal to unity. These weights depend on some channel state information (CSI) parameters. Hence, they have to be estimated locally at each node, thereby, resulting in channel estimation errors that could severely hinder CB performance. Exploiting an efficient asymptotic approximation at large K, we develop alternative RCB solutions that adapt to different implementation scenarios and wireless propagation environments ranging from monochromatic (i.e., scattering-free) to polychromatic (i.e., scattered) ones. Besides, in contrast to existing techniques, our new RCB solutions are distributed (i.e., DCB) in that they do not require any information exchange among nodes, thereby dramatically improving both WSN spectral and power efficiencies. Simulation results confirm that the proposed robust DCB (RDCB) techniques are much more robust in terms of achieved signal-to-noise ratio (SNR) against channel estimation errors than best representative CB benchmarks.

2013 ◽  
Vol 646 ◽  
pp. 120-125
Author(s):  
Xiao Min Chen ◽  
Xiao Dan Yu ◽  
Wei Tan ◽  
Xiang Bin Yu

We propose an iterative detection scheme for Turbo-BLAST system with optimal power allocation in the presence of channel state information imperfection. The proposed scheme uses the channel estimation matrix for detection and treats the interference caused by channel estimation errors and additive white Gaussian noise as equivalent noise where the channel estimation matrix and the statistical characteristic of channel estimation errors are necessitated. Simulation results show the proposed algorithm is effective to improve bit error rate (BER) performance through iterative detection for modified Turbo-BLAST system with optimal power allocation in the presence of imperfect channel state information.


Author(s):  
Faeik T. Al Rabee ◽  
Richard D. Gitlin

Non-orthogonal multiple access (NOMA) has been proposed as a promising multiple access (MA) technique in order to meet the requirements for fifth generation (5G) communications and to enhance the performance in internet of things (IoT) networks by enabling massive connectivity, high throughput, and low latency. This paper investigates the bit error rate (BER) performance of two-user uplink power-domain NOMA with a successive interference cancellation (SIC) receiver and taking into account channel estimation errors. The analysis considers two scenarios: perfect (ideal) channel estimation and a channel with estimation errors for various modulations schemes, BPSK, QPSK, and 16-QAM. The simulation results show that, as expected, increasing of the modulation level increases the SIC receiver BER. For example, at a signal-to-noise ratio (SNR) of 5 dB for perfect channel estimation and QPSK modulation, the user that is detected first has a BER of 0.005 compared to 0.14 for the user that is detected with the aid of the SIC receiver. Similarly, the BER of QPSK, assuming 0.25 channel estimation error of user 1, is equal to 0.06 at SNR = 15 dB compared to 0.017 for perfect estimation.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Xia Liu ◽  
Marek E. Bialkowski

This paper describes investigations into the antenna mutual coupling (MC) effect on channel estimation and capacity of a multiple-input multiple-output (MIMO) wireless communication system. The presented investigations close the gap existing in the previous works which assessed the effect of mutual coupling on MIMO capacity under the assumption of availability of perfect channel state information (CSI) at the receiver. The new approach assumes that the perfect CSI is not available due to channel estimation errors. The investigations are carried out for different spacing between array antenna elements producing a varying effect of mutual coupling on the channel estimation and the resulting MIMO channel capacity.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 149641-149648
Author(s):  
Mengmeng Xu ◽  
Fei Liu ◽  
Hengzhou Xu ◽  
Hai Zhu ◽  
Baofeng Wang

Sign in / Sign up

Export Citation Format

Share Document