scholarly journals Anti-Multipath Performance Improvement of an M-ary Position Phase Shift Keying Modulation System

Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1938 ◽  
Author(s):  
Haiyuan Wang ◽  
Hongxian Tian

Low-Power Wide-Area Network (LPWAN) is the technology that the Internet-of-Things (IoT) uses in long-distance, wide-coverage scenarios. As one of the ultra-narrowband (UNB) modulation techniques, M-ary position phase shift keying (MPPSK) modulation can provide high coverage and high reliability for LPWAN. This paper proposes a multipath separation method based on MPPSK modulation, which aims to eliminate the influence of multipath on the main path without increasing the spectrum overhead and system complexity. Specifically, the modulation parameter of the system is adjusted according to the delay value, so that the phase jump of the multipath signal falls outside the phase jump of the main path symbol to achieve separation of the multipath from the main path. Moreover, a normalized symbol joint decision method is proposed in order to reduce the introduced noise while using multipath information for decisions. The simulation results indicate that the multipath separation conditions given in this paper can meet the requirements of multipath separation of MPPSK signals. Compared with the existing mainstream decision scheme, the normalized symbol joint decision improves the demodulation performance of the system.

2019 ◽  
Vol 12 (3) ◽  
Author(s):  
M.J. Rudd ◽  
P.H. Kim ◽  
C.A. Potts ◽  
C. Doolin ◽  
H. Ramp ◽  
...  

2014 ◽  
Vol 974 ◽  
pp. 274-281
Author(s):  
Go Yun Ii ◽  
Thio Tzer Hwai Gilbert ◽  
K. Dimyati

This paper demonstrates the achievable performance enhancement in a multi-user network using optical unique code sequences. The study is conducted in a four-user Metropolitan Area Network (MAN) with a transmission rate of 10 Gbps. This paper investigates the feasibility of implementing Differential Phase Shift Keying (DPSK) and Differential Quadrature Phase Shift Keying (DQPSK) technique to replace conventional techniques such as On-Off Keying (OOK) and Amplitude Shift Keying (ASK). The performance of the integrated formulation of optical unique code sequenceswith DPSK and DQPSKtechnique is evaluated by determining the Bit Error Rate (BER) for various configurations and transmission distances up to 100 km.


2017 ◽  
Vol 24 (1) ◽  
pp. 115-124 ◽  
Author(s):  
Sanja Bauk ◽  
Anke Schmeink ◽  
Joan Colomer

AbstractThe paper proposes two Wireless Body Area Network Sensors (WBANSs) scenarios at the logical and simulation levels for improving occupational safety and health conditions at the developing seaport environment. The Port of Bar (Montenegro) is taken as an exemplar. The logical model is based on the actual position of the Port of Bar at the seaport market, its needs and capacities for the information systems innovation through technology transfer and diffusion. The simulation model analyses the channel between the body central unit (BCU) of the worker’s on port wireless body sub-network and the port access point. The quality of the signal transmission at the physical layer has been tested through a source code generated in the Matlab. The code includes the BCU composite signal modulation, transmission, and demodulation, along with a noise and fading effects analysis. The results of the simulation experiments for the different transmission frequencies and distances between transmitter (worker’s BCU) and receiver (port’s access point) by using binary phase-shift keying (BPSK) and quadratic phase-shift keying (QPSK) modulation schemes are presented. Some directions for further investigations in this field are given, as well.


2019 ◽  
Vol 7 (1) ◽  
pp. 30-39
Author(s):  
Fatima faydhe Al- Azzawi ◽  
Faeza Abas Abid ◽  
Zainab faydhe Al-Azzawi

Phase shift keying modulation approaches are widely used in the communication industry. Differential phase shift keying (DPSK) and Offset Quadrature phase shift keying (OQPSK) schemes are chosen to be investigated is multi environment channels, where both systems are designed using MATLAB Simulink and tested. Cross talk and unity of signals generated from DPSK and OQPSK are examined using Cross-correlation and auto-correlation, respectively. In this research a proposed system included improvement in bit error rate (BER) of both systems in  the additive white Gaussian Noise (AWGN) channel, by using the convolutional and block codes, by increasing the ratio of energy in the specular component to the energy in the diffuse component (k) and  the diversity order BER in the fading channels will be improved in both systems.    


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 940
Author(s):  
Nicoleta Cristina Gaitan

Recent market studies show that the market for remote monitoring devices of different medical parameters will grow exponentially. Globally, more than 4 million individuals will be monitored remotely from the perspective of different health parameters by 2023. Of particular importance is the way of remote transmission of the information acquired from the medical sensors. At this time, there are several methods such as Bluetooth, WI-FI, or other wireless communication interfaces. Recently, the communication based on LoRa (Long Range) technology has had an explosive development that allows the transmission of information over long distances with low energy consumption. The implementation of the IoT (Internet of Things) applications using LoRa devices based on open Long Range Wide-Area Network (LoRaWAN) protocol for long distances with low energy consumption can also be used in the medical field. Therefore, in this paper, we proposed and developed a long-distance communication architecture for medical devices based on the LoRaWAN protocol that allows data communications over a distance of more than 10 km.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 17
Author(s):  
Nur-A-Alam ◽  
Mominul Ahsan ◽  
Md. Abdul Based ◽  
Julfikar Haider ◽  
Eduardo M. G. Rodrigues

In the era of Industry 4.0, remote monitoring and controlling appliance/equipment at home, institute, or industry from a long distance with low power consumption remains challenging. At present, some smart phones are being actively used to control appliances at home or institute using Internet of Things (IoT) systems. This paper presents a novel smart automation system using long range (LoRa) technology. The proposed LoRa based system consists of wireless communication system and different types of sensors, operated by a smart phone application and powered by a low-power battery, with an operating range of 3–12 km distance. The system established a connection between an android phone and a microprocessor (ESP32) through Wi-Fi at the sender end. The ESP32 module was connected to a LoRa module. At the receiver end, an ESP32 module and LoRa module without Wi-Fi was employed. Wide Area Network (WAN) communication protocol was used on the LoRa module to provide switching functionality of the targeted area. The performance of the system was evaluated by three real-life case studies through measuring environmental temperature and humidity, detecting fire, and controlling the switching functionality of appliances. Obtaining correct environmental data, fire detection with 90% accuracy, and switching functionality with 92.33% accuracy at a distance up to 12 km demonstrated the high performance of the system. The proposed smart system with modular design proved to be highly effective in controlling and monitoring home appliances from a longer distance with relatively lower power consumption.


Sign in / Sign up

Export Citation Format

Share Document