scholarly journals Powering the Environmental Internet of Things

Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1940 ◽  
Author(s):  
Joshua Curry ◽  
Nick Harris

The Internet of Things (IoT) is a constantly-evolving area of research and touches almost every aspect of life in the modern world. As technology moves forward, it is becoming increasingly important for these IoT devices for environmental sensing to become self-powered to enable long-term operation. This paper provides an outlook on the current state-of-the-art in terms of energy harvesting for these low-power devices. An analytical approach is taken, first defining types of environments in which energy-harvesters operate, before exploring both well-known and novel energy harvesting techniques and their uses in modern-day sensing.

Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 407 ◽  
Author(s):  
Omar A. Saraereh ◽  
Amer Alsaraira ◽  
Imran Khan ◽  
Bong Jun Choi

The Internet-of-things (IoT) has been gradually paving the way for the pervasive connectivity of wireless networks. Due to the ability to connect a number of devices to the Internet, many applications of IoT networks have recently been proposed. Though these applications range from industrial automation to smart homes, healthcare applications are the most critical. Providing reliable connectivity among wearables and other monitoring devices is one of the major tasks of such healthcare networks. The main source of power for such low-powered IoT devices is the batteries, which have a limited lifetime and need to be replaced or recharged periodically. In order to improve their lifecycle, one of the most promising proposals is to harvest energy from the ambient resources in the environment. For this purpose, we designed an energy harvesting protocol that harvests energy from two ambient energy sources, namely radio frequency (RF) at 2.4 GHz and thermal energy. A rectenna is used to harvest RF energy, while the thermoelectric generator (TEG) is employed to harvest human thermal energy. To verify the proposed design, extensive simulations are performed in Green Castalia, which is a framework that is used with the Castalia simulator in OMNeT++. The results show significant improvements in terms of the harvested energy and lifecycle improvement of IoT devices.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1455
Author(s):  
Qiongfeng Shi ◽  
Huicong Liu

In recent years, we have witnessed the revolutionary innovation and flourishing advancement of the Internet of things (IoT), which will maintain a strong momentum even more with the gradual rollout of the fifth generation (5G) wireless network and the rapid development of personal healthcare electronics [...]


2019 ◽  
pp. 4-44 ◽  
Author(s):  
Peter Thorns

This paper discusses the organisations involved in the development of application standards, European regulations and best practice guides, their scope of work and internal structures. It considers their respective visions for the requirements for future standardisation work and considers in more detail those areas where these overlap, namely human centric or integrative lighting, connectivity and the Internet of Things, inclusivity and sustainability.


Impact ◽  
2019 ◽  
Vol 2019 (10) ◽  
pp. 61-63 ◽  
Author(s):  
Akihiro Fujii

The Internet of Things (IoT) is a term that describes a system of computing devices, digital machines, objects, animals or people that are interrelated. Each of the interrelated 'things' are given a unique identifier and the ability to transfer data over a network that does not require human-to-human or human-to-computer interaction. Examples of IoT in practice include a human with a heart monitor implant, an animal with a biochip transponder (an electronic device inserted under the skin that gives the animal a unique identification number) and a car that has built-in sensors which can alert the driver about any problems, such as when the type pressure is low. The concept of a network of devices was established as early as 1982, although the term 'Internet of Things' was almost certainly first coined by Kevin Ashton in 1999. Since then, IoT devices have become ubiquitous, certainly in some parts of the world. Although there have been significant developments in the technology associated with IoT, the concept is far from being fully realised. Indeed, the potential for the reach of IoT extends to areas which some would find surprising. Researchers at the Faculty of Science and Engineering, Hosei University in Japan, are exploring using IoT in the agricultural sector, with some specific work on the production of melons. For the advancement of IoT in agriculture, difficult and important issues are implementation of subtle activities into computers procedure. The researchers challenges are going on.


2020 ◽  
Vol 8 (27) ◽  
pp. 13619-13629 ◽  
Author(s):  
Asif Abdullah Khan ◽  
Md Masud Rana ◽  
Guangguang Huang ◽  
Nanqin Mei ◽  
Resul Saritas ◽  
...  

A high-performance perovskite/polymer piezoelectric nanogenerator for next generation self-powered wireless micro/nanodevices.


2021 ◽  
Vol 39 (4) ◽  
pp. 1-33
Author(s):  
Fulvio Corno ◽  
Luigi De Russis ◽  
Alberto Monge Roffarello

In the Internet of Things era, users are willing to personalize the joint behavior of their connected entities, i.e., smart devices and online service, by means of trigger-action rules such as “IF the entrance Nest security camera detects a movement, THEN blink the Philips Hue lamp in the kitchen.” Unfortunately, the spread of new supported technologies makes the number of possible combinations between triggers and actions continuously growing, thus motivating the need of assisting users in discovering new rules and functionality, e.g., through recommendation techniques. To this end, we present , a semantic Conversational Search and Recommendation (CSR) system able to suggest pertinent IF-THEN rules that can be easily deployed in different contexts starting from an abstract user’s need. By exploiting a conversational agent, the user can communicate her current personalization intention by specifying a set of functionality at a high level, e.g., to decrease the temperature of a room when she left it. Stemming from this input, implements a semantic recommendation process that takes into account ( a ) the current user’s intention , ( b ) the connected entities owned by the user, and ( c ) the user’s long-term preferences revealed by her profile. If not satisfied with the suggestions, then the user can converse with the system to provide further feedback, i.e., a short-term preference , thus allowing to provide refined recommendations that better align with the original intention. We evaluate by running different offline experiments with simulated users and real-world data. First, we test the recommendation process in different configurations, and we show that recommendation accuracy and similarity with target items increase as the interaction between the algorithm and the user proceeds. Then, we compare with other similar baseline recommender systems. Results are promising and demonstrate the effectiveness of in recommending IF-THEN rules that satisfy the current personalization intention of the user.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2975
Author(s):  
Long Liu ◽  
Xinge Guo ◽  
Weixin Liu ◽  
Chengkuo Lee

With the fast development of energy harvesting technology, micro-nano or scale-up energy harvesters have been proposed to allow sensors or internet of things (IoT) applications with self-powered or self-sustained capabilities. Facilitation within smart homes, manipulators in industries and monitoring systems in natural settings are all moving toward intellectually adaptable and energy-saving advances by converting distributed energies across diverse situations. The updated developments of major applications powered by improved energy harvesters are highlighted in this review. To begin, we study the evolution of energy harvesting technologies from fundamentals to various materials. Secondly, self-powered sensors and self-sustained IoT applications are discussed regarding current strategies for energy harvesting and sensing. Third, subdivided classifications investigate typical and new applications for smart homes, gas sensing, human monitoring, robotics, transportation, blue energy, aircraft, and aerospace. Lastly, the prospects of smart cities in the 5G era are discussed and summarized, along with research and application directions that have emerged.


T-Comm ◽  
2020 ◽  
Vol 14 (12) ◽  
pp. 45-50
Author(s):  
Mikhail E. Sukhoparov ◽  
◽  
Ilya S. Lebedev ◽  

The development of IoT concept makes it necessary to search and improve models and methods for analyzing the state of remote autonomous devices. Due to the fact that some devices are located outside the controlled area, it becomes necessary to develop universal models and methods for identifying the state of low-power devices from a computational point of view, using complex approaches to analyzing data coming from various information channels. The article discusses an approach to identifying IoT devices state, based on parallel functioning classifiers that process time series received from elements in various states and modes of operation. The aim of the work is to develop an approach for identifying the state of IoT devices based on time series recorded during the execution of various processes. The proposed solution is based on methods of parallel classification and statistical analysis, requires an initial labeled sample. The use of several classifiers that give an answer "independently" from each other makes it possible to average the error by "collective" voting. The developed approach is tested on a sequence of classifying algorithms, to the input of which the time series obtained experimentally under various operating conditions were fed. Results are presented for a naive Bayesian classifier, decision trees, discriminant analysis, and the k nearest neighbors method. The use of a sequence of classification algorithms operating in parallel allows scaling by adding new classifiers without losing processing speed. The method makes it possible to identify the state of the Internet of Things device with relatively small requirements for computing resources, ease of implementation, and scalability by adding new classifying algorithms.


2018 ◽  
Author(s):  
Henry Tranter

Security is always at the forefront of developing technologies. One can seldom go a week without hearing of a new data breach or hacking attempt from various groups around the world, often taking advantage of a simple flaw in a system’s architecture. The Internet of Things (IoT) is one of these developing technologies which may be at risk of such attacks. IoT devices are becoming more and more prevalent in everyday life. From keeping track of an individual’s health, to suggesting meals from items available in an individual’s fridge, these technologies are taking a much larger role in the personal lives of their users. With this in mind, how is security being considered in the development of these technologies? Are these devices that monitor individual’s personal lives just additional vectors for potential data theft? Throughout this survey, various approaches to the development of security systems concerning IoT devices in the home will be discussed, compared, and contrasted in the hope of providing an ideal solution to the problems this technology may produce.


Author(s):  
Clinton Fernandes ◽  
Vijay Sivaraman

This article examines the implications of selected aspects of the Telecommunications (Interception and Access) Amendment (Data Retention) Act 2015, which was passed by the Australian Parliament in March 2015. It shows how the new law has strengthened protections for privacy. However, focusing on the investigatory implications, it shows how the law provides a tactical advantage to investigators who pursue whistleblowers and investigative journalists. The article exposes an apparent discrepancy in the way ‘journalist’ is defined across different pieces of legislation. It argues that although legislators’ interest has been overwhelmingly focused on communications data, the explosion of data generated by the so-called Internet-of-Things (IoT) is as important or more. It shows how the sensors in selected IoT devices lead to a loss of user control and will enable non-stop, involuntary and ubiquitous monitoring of individuals. It suggests that the law will need to be amended further once legislators and investigators’ knowledge of the potential of IoT increases. 


Sign in / Sign up

Export Citation Format

Share Document