scholarly journals Numerical Study on Ultrasonic Guided Waves for the Inspection of Polygonal Drill Pipes

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2128 ◽  
Author(s):  
Xiang Wan ◽  
Xuhui Zhang ◽  
Hongwei Fan ◽  
Peter W. Tse ◽  
Ming Dong ◽  
...  

The polygonal drill pipe is one of the most critical yet weakest part in a high-torque drill machine. The inspection of a polygonal drill pipe to avoid its failure and thus to ensure safe operation of the drilling machine is of great importance. However, the current most frequently used ultrasonic inspection method is time-consuming and inefficient when dealing with a polygonal drill pipe, which is normally up to several meters. There is an urgent need to develop an efficient method to inspect polygonal drill pipes. In this paper, an ultrasonic guided wave technique is proposed to inspect polygonal drill pipes. Dispersion curves of polygonal drill pipes are firstly derived by using the semi-analytical finite element method. The ALID (absorbing layer using increasing damping) technique is applied to eliminate unwanted boundary reflections. The propagation characteristics of ultrasonic guided waves in normal, symmetrically damaged, and asymmetrically damaged polygonal drill pipes are studied. The results have shown that the ultrasonic guided wave technique is a promising and effective method for the inspection of polygonal drill pipes.

Author(s):  
Owen M. Malinowski ◽  
Matthew S. Lindsey ◽  
Jason K. Van Velsor

In the past few decades, ultrasonic guided waves have been utilized more frequently Non-Destructive Testing (NDT); most notably, in the qualitative screening of buried piping. However, only a fraction of their potential applications in NDT have been fully realized. This is due, in part, to their complex nature, as well as the high level of expertise required to understand and utilize their propagation characteristics. The mode/frequency combinations that can be generated in a particular structure depend on geometry and material properties and are represented by the so-called dispersion curves. Although extensive research has been done in ultrasonic guided wave propagation in various geometries and materials, the treatment of ultrasonic guided wave propagation in periodic structures has received little attention. In this paper, academic aspects of ultrasonic guided wave propagation in structures with periodicity in the wave vector direction are investigated, with the practical purpose of developing an ultrasonic guided wave based inspection technique for finned tubing. Theoretical, numerical, and experimental methods are employed. The results of this investigation show excellent agreement between theory, numerical modeling, and experimentation; all of which indicate that ultrasonic guided waves will propagate coherently in finned tube only if the proper wave modes and frequencies are selected. It is shown that the frequencies at which propagating wave modes exist can be predicted theoretically and numerically, and depend strongly on the fin geometry. Furthermore, the results show that these propagating wave modes are capable of screening for and identifying the axial location of damage in the tube wall, as well as separation of the fins from the tube wall. The conclusion drawn from these results is that Guided Wave Testing (GWT) is a viable inspection method for screening finned tubing.


Author(s):  
Shijiu Jin ◽  
Liying Sun ◽  
Guichun Liu ◽  
Yibo Li ◽  
Hong Zhang

A new non-destructive pipe inspection method, ultrasonic guided wave method as well as the comparison between ultrasonics and guided waves is introduced. An investigation of the guided ultrasonic waves traveling along pipes with fluid loading on the inside and outside of the pipe is described. The effect of inner and outer media has been researched by considering a steel pipe with air and water inside and outside the experimental pipe. Site experiment was carried out on a heating pipe in the resident area of Bohai Oil Company, China. A typical cylindrical guided wave, longitudinal guided wave was used to examine pipes with artificial defects and its propagation characteristics along the pipe were studied. Good agreement has been obtained between the experiments and predictions for pipes with different loading on the pipe.


Author(s):  
J Qu ◽  
Y. H. Berthelot ◽  
L. J. Jacobs

This paper provides an overview of a study on circumferential guided waves in a thick annulus. Both steady state, time-harmonic waves and transient waves are considered. Several solution methods are reviewed and numerical solutions are presented for the propagation of ultrasonic circumferential waves in a thick, curved, two-dimensional annular waveguide. The modal content of the signal and the displacement profiles across the wall thickness are investigated. These studies provide valuable guidance in selecting optimal parameters for use in applications of the guided wave technique to the detection of cracks on the inner surface of annular components. Experimental results show that the technique can be used on parts with complex geometries (e. g. the pitch shaft of a helicopter) to detect cracks that would not be detectable by standard ultrasonic inspection.


2013 ◽  
Vol 330 ◽  
pp. 996-1002
Author(s):  
Wen Chao Lv ◽  
Shao Ping Zhou ◽  
Ai Qiang Cui

Because there are many mode transformations when the ultrasonic guided waves run into defects in the pipeline, the reflected signals got by means of the traditional ultrasonic guided wave technique are complex and the amplitudes are small. The time reversal method is a way to intercept the reflected signals in the initial results with a certain bandwidth and excite the time reversal guided waves on the corresponding nodes. In this way, energies of the guided wave are focused in time and space. By comparing the accuracy of defects identification in the straight pipes and the bent pipes with the traditional ultrasonic guided wave method and the time reversal method, this paper proves that the time reversal method has many advantages over the tradition ultrasonic guided wave method. The time reversal method overcomes disadvantages of the traditional guided wave technique and improves the identification degree and accuracy of defects effectively. It lays the foundation for the final defect identification.


2020 ◽  
pp. 147592172091969 ◽  
Author(s):  
Xiang Wan ◽  
Meiru Liu ◽  
Xuhui Zhang ◽  
Hongwei Fan ◽  
Peter W Tse ◽  
...  

Square steel tubes have been widely used in buildings and machines in civil engineering. The inspection of square tubes is becoming increasingly urgent and important to ensure the safety of these buildings and machines. However, the current most frequently used traditional ultrasonic inspection method is time-consuming and inefficient when dealing with long square tubes. There is an urgent need to develop an efficient approach to inspect square tubes. In this article, the use of ultrasonic guided waves is proposed. Phase and group velocity dispersion curves of square tube structures are first derived using the semi-analytical finite element method. An appropriate guided wave mode used for inspecting square tubes is selected. Ultrasonic guided waves propagating in normal, in-plane surface-damaged, and edge-damaged square tubes are numerically studied. It is illustrated that the monitoring points are able to receive reflected wave signals from both the in-plane surface and the edge damages. Experimental studies are also conducted to study ultrasonic guided waves interacting with circular through-hole damages located in surfaces and slot damages at edges. It is shown that both the circular through-hole damages located in different surfaces and slot damages at different edges can be clearly detected by reflected guided wave packets. It is found that the signal-to-noise ratios have been significantly improved after applying impedance matching to piezoelectric wafer transducers. The results have shown that ultrasonic guided waves are a promising and effective method for the inspection of square tubes.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Xiang Wan ◽  
Meiru Liu ◽  
Xuhui Zhang ◽  
Hongwei Fan ◽  
Qinghua Mao ◽  
...  

The hexagonal pipe is a special kind of tube structure. Its inner surface of the cross section is in the shape of circle, while the outer surface is hexagonal. It has functioned as an essential and critical part of a drill stem in a high-torque drill machine used in various resource exploitation fields. The inspection of a hexagonal pipe to avoid its failure and thus to ensure safe operation of a drilling machine is becoming increasingly urgent and important. In this study, the excitation and propagation of ultrasonic guided waves for the purpose of detecting defects in hexagonal pipes are proposed. Dispersion curves of hexagonal pipes are firstly derived by using semianalytical finite element method. Based on these dispersion curves, longitudinal L (0, 2) mode at 100 kHz is selected to inspect hexagonal pipes. A ring of piezoelectric transducers (PZTs) with the size of 25 mm × 5 mm ×0.5 mm is able to maximize the amplitude of L (0, 2) mode and successfully suppress the undesired L (0, 1) mode in the experiments. Numerical and experimental studies have shown that the displacement field of L (0, 2) mode at 100 kHz is almost uniformly distributed along the circumferential direction. Furthermore, L (0, 2) mode ultrasonic guided waves at 100 kHz are capable of detecting circular through-hole damages located in the plane and near the edge in a hexagonal pipe. Our study results have demonstrated that the use of longitudinal L (0, 2) mode ultrasonic guided wave provides a promising and effective alternative for the detection of defects in hexagonal pipe structures.


2006 ◽  
Vol 321-323 ◽  
pp. 776-779
Author(s):  
Hak Joon Kim ◽  
Sung Jin Song ◽  
Jung Ho Seo ◽  
Jae Hee Kim ◽  
Heung Seop Eom

For the long range inspection of structures in nuclear power plant using array transducers, it is necessary to focus waves on defects under interrogation. To take care of such a need, in this study we adopt a time reversal technique that is claimed to be very robust to focus ultrasonic waves on defects. Specifically, we calculate the appropriate time delay using the time reversal technique and re-generate ultrasonic guided waves that are focusing to an interrogated defect with the calculated time delay. In this paper, we describe the principle of the time reversal technique briefly and present the performance enhancement obtained by the time reversal techniques.


Author(s):  
Li Xia ◽  
Yufeng Ye ◽  
Xianggang Wang

According to the problem of the conventional thickness measurement method used to measure the furnace wall thinning in petrochemical industry, proposed a new NDT named guided wave to detect the presence of the wall thickness. Use of the technique for detection of dangerous parts of the refinery furnace tube, take the coker furnace and the furnace of crude oil distillation unit guided wave inspection application for Example, and through analysis of test data and field-proven and found many security risks, and guide the user to process. It concluded that the ultrasonic guided wave technology can effective realization radiation section of the furnace tube wall thickness detection.


2006 ◽  
Vol 326-328 ◽  
pp. 681-684 ◽  
Author(s):  
Ik Keun Park ◽  
Yong Kwon Kim ◽  
Tae Hyung Kim ◽  
Yong Sang Cho

This paper capitalizes on recent advances in the area of non-contact ultrasonic guided wave techniques. The present technique provides a decent method for nondestructive testing of defect thinning simulating a hidden corrosion or FAC(Flow Accelerated Corrosion) in a thin aluminum plate. The proposed approach is based on using EMAT(Electro-magnetic Acoustic Transducer) to generate guided waves and detect the wall thinning without any coupling. Interesting features in the dispersive behavior of selected guided modes are used for the detection of plate thinning. It is shown that mode cut-off measurement allows us to monitor a defect thinning level while a group velocity change can be used to quantify the thinning depth.


Author(s):  
Yao Wei ◽  
Weibin Wang ◽  
Yuqin Wang ◽  
Guichun Liu ◽  
Guangwen Liu ◽  
...  

Ultrasonic Guided Wave testing is now widely used for the inspection of buried pipelines. The principle, characteristics and application of the inspection were introduced. As an example, pipelines in gas station were tested on-site and the reliability of testing results was verified by excavation. A comparison result showed that the ultrasonic guided waves can make it reality to test on site quickly, and has wide prospect.


Sign in / Sign up

Export Citation Format

Share Document