scholarly journals Intrinsic Physical Unclonable Function (PUF) Sensors in Commodity Devices

Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2428 ◽  
Author(s):  
Shuai Chen ◽  
Bing Li ◽  
Yuan Cao

The environment-dependent feature of physical unclonable functions (PUFs) is capable of sensing environment changes. This paper presents an analysis and categorization of a variety of PUF sensors. Prior works have demonstrated that PUFs can be used as sensors while providing a security authentication assurance. However, most of the PUF sensors need a dedicated circuit. It can be difficult to implemented in commercial off-the-shelf devices. This paper focuses on the intrinsic Dynamic Random Access Memory (DRAM) PUF-based sensors, which requires no modifications for hardware. The preliminary experimental results on Raspberry Pi have demonstrated the feasibility of our design. Furthermore, we configured the DRAM PUF-based sensor in a DRAM PUF-based key generation scheme which improves the practicability of the design.

Sensors ◽  
2018 ◽  
Vol 18 (6) ◽  
pp. 1776 ◽  
Author(s):  
Mingyang Gong ◽  
Hailong Liu ◽  
Run Min ◽  
Zhenglin Liu

2022 ◽  
Vol 2 ◽  
Author(s):  
Fayez Gebali ◽  
Mohammad Mamun

Physically unclonable functions (PUFs) are now an essential component for strengthening the security of Internet of Things (IoT) edge devices. These devices are an important component in many infrastructure systems such as telehealth, commerce, industry, etc. Traditionally these devices are the weakest link in the security of the system since they have limited storage, processing, and energy resources. Furthermore they are located in unsecured environments and could easily be the target of tampering and various types of attacks. We review in this work the structure of most salient types of PUF systems such as static RAM static random access memory (SRAM), ring oscillator (RO), arbiter PUFs, coating PUFs and dynamic RAM dynamic random access memory (DRAM). We discuss statistical models for the five most common types of PUFs and identify the main parameters defining their performance. We review some of the most recent algorithms that can be used to provide stable authentication and secret key generation without having to use helper data or secure sketch algorithms. Finally we provide results showing the performance of these devices and how they depend on the authentication algorithm used and the main system parameters.


Author(s):  
Sven Müelich ◽  
Chirag Sudarshan ◽  
Christian Weis ◽  
Martin Bossert ◽  
Robert F.H. Fischer ◽  
...  

Author(s):  
Phil Schani ◽  
S. Subramanian ◽  
Vince Soorholtz ◽  
Pat Liston ◽  
Jamey Moss ◽  
...  

Abstract Temperature sensitive single bit failures at wafer level testing on 0.4µm Fast Static Random Access Memory (FSRAM) devices are analyzed. Top down deprocessing and planar Transmission Electron Microscopy (TEM) analyses show a unique dislocation in the substrate to be the cause of these failures. The dislocation always occurs at the exact same location within the bitcell layout with respect to the single bit failing data state. The dislocation is believed to be associated with buried contact processing used in this type of bitcell layout.


Author(s):  
Ramachandra Chitakudige ◽  
Sarat Kumar Dash ◽  
A.M. Khan

Abstract Detection of both Insufficient Buried Contact (IBC) and cell-to-cell short defects is quite a challenging task for failure analysis in submicron Dynamic Random Access Memory (DRAM) devices. A combination of a well-controlled wet etch and high selectivity poly silicon etch is a key requirement in the deprocessing of DRAM for detection of these types of failures. High selectivity poly silicon etch methods have been reported using complicated system such as ECR (Electron Cyclotron Resonance) Plasma system. The fact that these systems use hazardous gases like Cl2, HBr, and SF6 motivates the search for safer alternative deprocessing chemistries. The present work describes high selectivity poly silicon etch using simple Reactive Ion Etch (RIE) plasma system using less hazardous gases such as CF4, O2 etc. A combination of controlled wet etch and high selectivity poly silicon etch have been used to detect both IBC and cell-to-cell shorts in submicron DRAMs.


Sign in / Sign up

Export Citation Format

Share Document