scholarly journals OFDM Chirp Waveform Design Based on Subchirp Bandwidth Overlap and Segmented Transmitting for Low Correlation Interference in MIMO Radar

Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2696
Author(s):  
Xiang Lan ◽  
Min Zhang ◽  
Jin-Xing Li

There are some special merits for the orthogonal frequency division multiplexing (OFDM) chirp waveform as multiple input multiple output (MIMO) signals. This signal has high range resolution, good Doppler tolerance, and constant modulus superiority since it exploits a full bandwidth and is based on chirp signals. The correlation sidelobe peaks level are critical for the detection requirement of MIMO radar signals, however conventional OFDM chirp signals produce high autocorrelation sidelobe peaks (ASP) and cross-correlation peaks (CP), which reduces detection performance. In this paper, we explore the structure of OFDM chirp signals’ autocorrelation function and proposed a scheme to reduce the designed signal’s ASP by a designing suitable range of subchirp bandwidth and a segmented transmit-receive mode. Next, we explore a suitable range of interval between the chirp rates of each two signals to reduce the CP. The simulation of designed signals verifies the effectiveness of the proposed methods in the reduction of ASP and CP, with the correlation performance being compared with recent relate studies. In addition, the multiple signals detection and one-dimensional range image simulation show the good detection performance of a designed signal in MIMO radar detection.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yachao Li ◽  
Ziqiang Meng ◽  
Shengqi Zhu ◽  
Yinghui Quan ◽  
Mengdao Xing ◽  
...  

As a special multiple-input multiple-output (MIMO) radar networking mode, missile-borne forward-looking synthetic aperture radar (MFL-SAR) has many potential applications. This paper describes and analyzes properties of this new configuration. Range history and Doppler history are analyzed and derived using the designed geometric configuration. Then the expressions of range and Doppler resolution are determined based on the validity of two-dimensional (2D) resolution imaging capability. To help to design the proper system and motion parameters of this configuration, key parameters affecting the imaging ability are found out. Due to high velocities and accelerations of both transmitter and receiver, high-order terms in the slant range equation should be kept to reduce the approximation error. The range resolution and Doppler resolution of MFL-SAR are both space-variant and time-variant owing to the complexity of this configuration. The tiny changes of 2D resolution during the synthetic aperture time should be considered when designing the imaging algorithm of MFL-SAR.


Multiple Input Multiple Output (MIMO) RADAR system is proficient in improving the range resolution while considering the orthogonality of the signal. In this paper, Poly Phase coded waveforms are optimized in time domain. The phase codes of the transmit waveforms are designed using ‘JAYA’ optimization algorithm and compared with the literature. Though Multi-Objective Decision Making (MODM) problem shows trade-off between different performance parameters, computationally effective ‘JAYA’ algorithm outperforms. The approach is validated with mathematical modeling and numerical simulations.


2021 ◽  
Vol 13 (15) ◽  
pp. 2964
Author(s):  
Fangqing Wen ◽  
Junpeng Shi ◽  
Xinhai Wang ◽  
Lin Wang

Ideal transmitting and receiving (Tx/Rx) array response is always desirable in multiple-input multiple-output (MIMO) radar. In practice, nevertheless, Tx/Rx arrays may be susceptible to unknown gain-phase errors (GPE) and yield seriously decreased positioning accuracy. This paper focuses on the direction-of-departure (DOD) and direction-of-arrival (DOA) problem in bistatic MIMO radar with unknown gain-phase errors (GPE). A novel parallel factor (PARAFAC) estimator is proposed. The factor matrices containing DOD and DOA are firstly obtained via PARAFAC decomposition. One DOD-DOA pair estimation is then accomplished from the spectrum searching. Thereafter, the remainder DOD and DOA are achieved by the least squares technique with the previous estimated angle pair. The proposed estimator is analyzed in detail. It only requires one instrumental Tx/Rx sensor, and it outperforms the state-of-the-art algorithms. Numerical simulations verify the theoretical advantages.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ajay Kumar Yadav ◽  
Pritam Keshari Sahoo ◽  
Yogendra Kumar Prajapati

Abstract Orthogonal frequency division multiplexing (OFDM) based massive multiuser (MU) multiple input multiple output (MIMO) system is popularly known as high peak-to-average power ratio (PAPR) issue. The OFDM-based massive MIMO system exhibits large number of antennas at Base Station (BS) due to the use of large number of high-power amplifiers (HPA). High PAPR causes HPAs to work in a nonlinear region, and hardware cost of nonlinear HPAs are very high and also power inefficient. Hence, to tackle this problem, this manuscript suggests a novel scheme based on the joint MU precoding and PAPR minimization (PP) expressed as a convex optimization problem solved by steepest gradient descent (GD) with μ-law companding approach. Therefore, we develop a new scheme mentioned to as MU-PP-GDs with μ-law companding to minimize PAPR by compressing and enlarging of massive MIMO OFDM signals simultaneously. At CCDF = 10−3, the proposed scheme (MU-PP-GDs with μ-law companding for Iterations = 100) minimizes the PAPR to 3.70 dB which is better than that of MU-PP-GDs, (iteration = 100) as shown in simulation results.


Author(s):  
Hussein A. Leftah ◽  
Huda N. Alminshid

<p>Multiple input-multiple output (MIMO) is a multipath diversity exploring approach which is emerged with orthogonal frequency division multiplexing (OFDM) to produce MIMO-OFDM that is widely used in wireless communications. This paper presents a discrete Hart-ley transform (DHT) precoded MIMO-OFDM system over multipath frequency-selective fading channel with large-size quadrature amplitude modulation (16-QAM, 64-QAM and 256-QAM). A mathematical models for the BER and channel capacity over mutlipath fading channels are also derived in this paper. Average Bit-error-rate (BER) and channel capacity of the presented system is considered and compared with that of the traditional MIMO-OFDM. Simulation results shows that the transmission performance and channel capacity of the proposed schemes is better than that of the traditional MIMO-OFDM without a pre-coder.</p>


Sign in / Sign up

Export Citation Format

Share Document