scholarly journals Identification of Soybean Varieties Using Hyperspectral Imaging Coupled with Convolutional Neural Network

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4065 ◽  
Author(s):  
Zhu ◽  
Zhou ◽  
Zhang ◽  
Bao ◽  
Wu ◽  
...  

Soybean variety is connected to stress resistance ability, as well as nutritional and commercial value. Near-infrared hyperspectral imaging was applied to classify three varieties of soybeans (Zhonghuang37, Zhonghuang41, and Zhonghuang55). Pixel-wise spectra were extracted and preprocessed, and average spectra were also obtained. Convolutional neural networks (CNN) using the average spectra and pixel-wise spectra of different numbers of soybeans were built. Pixel-wise CNN models obtained good performance predicting pixel-wise spectra and average spectra. With the increase of soybean numbers, performances were improved, with the classification accuracy of each variety over 90%. Traditionally, the number of samples used for modeling is large. It is time-consuming and requires labor to obtain hyperspectral data from large batches of samples. To explore the possibility of achieving decent identification results with few samples, a majority vote was also applied to the pixel-wise CNN models to identify a single soybean variety. Prediction maps were obtained to present the classification results intuitively. Models using pixel-wise spectra of 60 soybeans showed equivalent performance to those using the average spectra of 810 soybeans, illustrating the possibility of discriminating soybean varieties using few samples by acquiring pixel-wise spectra.

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 742
Author(s):  
Canh Nguyen ◽  
Vasit Sagan ◽  
Matthew Maimaitiyiming ◽  
Maitiniyazi Maimaitijiang ◽  
Sourav Bhadra ◽  
...  

Early detection of grapevine viral diseases is critical for early interventions in order to prevent the disease from spreading to the entire vineyard. Hyperspectral remote sensing can potentially detect and quantify viral diseases in a nondestructive manner. This study utilized hyperspectral imagery at the plant level to identify and classify grapevines inoculated with the newly discovered DNA virus grapevine vein-clearing virus (GVCV) at the early asymptomatic stages. An experiment was set up at a test site at South Farm Research Center, Columbia, MO, USA (38.92 N, −92.28 W), with two grapevine groups, namely healthy and GVCV-infected, while other conditions were controlled. Images of each vine were captured by a SPECIM IQ 400–1000 nm hyperspectral sensor (Oulu, Finland). Hyperspectral images were calibrated and preprocessed to retain only grapevine pixels. A statistical approach was employed to discriminate two reflectance spectra patterns between healthy and GVCV vines. Disease-centric vegetation indices (VIs) were established and explored in terms of their importance to the classification power. Pixel-wise (spectral features) classification was performed in parallel with image-wise (joint spatial–spectral features) classification within a framework involving deep learning architectures and traditional machine learning. The results showed that: (1) the discriminative wavelength regions included the 900–940 nm range in the near-infrared (NIR) region in vines 30 days after sowing (DAS) and the entire visual (VIS) region of 400–700 nm in vines 90 DAS; (2) the normalized pheophytization index (NPQI), fluorescence ratio index 1 (FRI1), plant senescence reflectance index (PSRI), anthocyanin index (AntGitelson), and water stress and canopy temperature (WSCT) measures were the most discriminative indices; (3) the support vector machine (SVM) was effective in VI-wise classification with smaller feature spaces, while the RF classifier performed better in pixel-wise and image-wise classification with larger feature spaces; and (4) the automated 3D convolutional neural network (3D-CNN) feature extractor provided promising results over the 2D convolutional neural network (2D-CNN) in learning features from hyperspectral data cubes with a limited number of samples.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6666
Author(s):  
Kamil Książek ◽  
Michał Romaszewski ◽  
Przemysław Głomb ◽  
Bartosz Grabowski ◽  
Michał Cholewa

In recent years, growing interest in deep learning neural networks has raised a question on how they can be used for effective processing of high-dimensional datasets produced by hyperspectral imaging (HSI). HSI, traditionally viewed as being within the scope of remote sensing, is used in non-invasive substance classification. One of the areas of potential application is forensic science, where substance classification on the scenes is important. An example problem from that area—blood stain classification—is a case study for the evaluation of methods that process hyperspectral data. To investigate the deep learning classification performance for this problem we have performed experiments on a dataset which has not been previously tested using this kind of model. This dataset consists of several images with blood and blood-like substances like ketchup, tomato concentrate, artificial blood, etc. To test both the classic approach to hyperspectral classification and a more realistic application-oriented scenario, we have prepared two different sets of experiments. In the first one, Hyperspectral Transductive Classification (HTC), both a training and a test set come from the same image. In the second one, Hyperspectral Inductive Classification (HIC), a test set is derived from a different image, which is more challenging for classifiers but more useful from the point of view of forensic investigators. We conducted the study using several architectures like 1D, 2D and 3D convolutional neural networks (CNN), a recurrent neural network (RNN) and a multilayer perceptron (MLP). The performance of the models was compared with baseline results of Support Vector Machine (SVM). We have also presented a model evaluation method based on t-SNE and confusion matrix analysis that allows us to detect and eliminate some cases of model undertraining. Our results show that in the transductive case, all models, including the MLP and the SVM, have comparative performance, with no clear advantage of deep learning models. The Overall Accuracy range across all models is 98–100% for the easier image set, and 74–94% for the more difficult one. However, in a more challenging inductive case, selected deep learning architectures offer a significant advantage; their best Overall Accuracy is in the range of 57–71%, improving the baseline set by the non-deep models by up to 9 percentage points. We have presented a detailed analysis of results and a discussion, including a summary of conclusions for each tested architecture. An analysis of per-class errors shows that the score for each class is highly model-dependent. Considering this and the fact that the best performing models come from two different architecture families (3D CNN and RNN), our results suggest that tailoring the deep neural network architecture to hyperspectral data is still an open problem.


2021 ◽  
Vol 14 ◽  
Author(s):  
Kunqiang Qing ◽  
Ruisen Huang ◽  
Keum-Shik Hong

This study decodes consumers' preference levels using a convolutional neural network (CNN) in neuromarketing. The classification accuracy in neuromarketing is a critical factor in evaluating the intentions of the consumers. Functional near-infrared spectroscopy (fNIRS) is utilized as a neuroimaging modality to measure the cerebral hemodynamic responses. In this study, a specific decoding structure, called CNN-based fNIRS-data analysis, was designed to achieve a high classification accuracy. Compared to other methods, the automated characteristics, constant training of the dataset, and learning efficiency of the proposed method are the main advantages. The experimental procedure required eight healthy participants (four female and four male) to view commercial advertisement videos of different durations (15, 30, and 60 s). The cerebral hemodynamic responses of the participants were measured. To compare the preference classification performances, CNN was utilized to extract the most common features, including the mean, peak, variance, kurtosis, and skewness. Considering three video durations, the average classification accuracies of 15, 30, and 60 s videos were 84.3, 87.9, and 86.4%, respectively. Among them, the classification accuracy of 87.9% for 30 s videos was the highest. The average classification accuracies of three preferences in females and males were 86.2 and 86.3%, respectively, showing no difference in each group. By comparing the classification performances in three different combinations (like vs. so-so, like vs. dislike, and so-so vs. dislike) between two groups, male participants were observed to have targeted preferences for commercial advertising, and the classification performance 88.4% between “like” vs. “dislike” out of three categories was the highest. Finally, pairwise classification performance are shown as follows: For female, 86.1% (like vs. so-so), 87.4% (like vs. dislike), 85.2% (so-so vs. dislike), and for male 85.7, 88.4, 85.1%, respectively.


Author(s):  
Jonathan Readshaw ◽  
Stefano Giani

AbstractThis work presents a convolutional neural network for the prediction of next-day stock fluctuations using company-specific news headlines. Experiments to evaluate model performance using various configurations of word embeddings and convolutional filter widths are reported. The total number of convolutional filters used is far fewer than is common, reducing the dimensionality of the task without loss of accuracy. Furthermore, multiple hidden layers with decreasing dimensionality are employed. A classification accuracy of 61.7% is achieved using pre-learned embeddings, that are fine-tuned during training to represent the specific context of this task. Multiple filter widths are also implemented to detect different length phrases that are key for classification. Trading simulations are conducted using the presented classification results. Initial investments are more than tripled over an 838-day testing period using the optimal classification configuration and a simple trading strategy. Two novel methods are presented to reduce the risk of the trading simulations. Adjustment of the sigmoid class threshold and re-labelling headlines using multiple classes form the basis of these methods. A combination of these approaches is found to be more than double the Average Trade Profit achieved during baseline simulations.


2020 ◽  
Vol 12 (11) ◽  
pp. 1780 ◽  
Author(s):  
Yao Liu ◽  
Lianru Gao ◽  
Chenchao Xiao ◽  
Ying Qu ◽  
Ke Zheng ◽  
...  

Convolutional neural networks (CNNs) have been widely applied in hyperspectral imagery (HSI) classification. However, their classification performance might be limited by the scarcity of labeled data to be used for training and validation. In this paper, we propose a novel lightweight shuffled group convolutional neural network (abbreviated as SG-CNN) to achieve efficient training with a limited training dataset in HSI classification. SG-CNN consists of SG conv units that employ conventional and atrous convolution in different groups, followed by channel shuffle operation and shortcut connection. In this way, SG-CNNs have less trainable parameters, whilst they can still be accurately and efficiently trained with fewer labeled samples. Transfer learning between different HSI datasets is also applied on the SG-CNN to further improve the classification accuracy. To evaluate the effectiveness of SG-CNNs for HSI classification, experiments have been conducted on three public HSI datasets pretrained on HSIs from different sensors. SG-CNNs with different levels of complexity were tested, and their classification results were compared with fine-tuned ShuffleNet2, ResNeXt, and their original counterparts. The experimental results demonstrate that SG-CNNs can achieve competitive classification performance when the amount of labeled data for training is poor, as well as efficiently providing satisfying classification results.


2020 ◽  
Vol 50 (3) ◽  
Author(s):  
Wang Xiaoyan ◽  
Li Zhiwei ◽  
Wang Wenjun ◽  
Wang Jiawei

ABSTRACT: Chlorophyll is a major factor affecting photosynthesis; and consequently, crop growth and yield. In this study, we devised a chlorophyll-content detection model for millet leaves in different stages of growth based on hyperspectral data. The hyperspectral images of millet leaves were obtained under a wavelength range of 380-1000 nm using a hyperspectral imager. Threshold segmentation was performed with near-infrared (NIR) reflectance and normalized difference vegetation index (NDVI) to intelligently acquire the regions of interest (ROI). Furthermore, raw spectral data were preprocessed using multivariate scatter correction (MSC). A correlation coefficient-successive projections algorithm (CC-SPA) was used to extract the characteristic wavelengths, and the characteristic parameters were extracted based on the spectral and image information. A partial least squares regression (PLSR) prediction model was established based on the single characteristic parameter and multi-characteristic parameter fusion. The determination coefficient (Rv 2) and the root-mean-square error (RMSEv) of the validation set for the multi-characteristic parameter fusion model were reported to be 0.813 and 1.766, respectively, which are higher than those obtained by the single characteristic parameter model. Based on the multi-characteristic parameter fusion, an attention-convolutional neural network (attention-CNN) (Rv 2 = 0.839, RMSEv = 1.451, RPD = 2.355) was established, which is more effective than the PLSR (Rv 2 = 0.813, RMSEv = 1.766, RPD = 2.167) and least squares support vector machine (LS-SVM) models (Rv 2 = 0.806, RMSEv = 1.576, RPD = 2.061). These results indicated that the combination of hyperspectral imaging and attention-CNN is beneficial to the application of nutrient element monitoring of crops.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Lei Zhang ◽  
Xiangqian Ding ◽  
Ruichun Hou

The origin of tobacco is the most important factor in determining the style characteristics and intrinsic quality of tobacco. There are many applications for the identification of tobacco origin by near-infrared spectroscopy. In order to improve the accuracy of the tobacco origin classification, a near-infrared spectrum (NIRS) identification method based on multimodal convolutional neural networks (CNN) was proposed, taking advantage of the strong feature extraction ability of the CNN. Firstly, the one-dimensional convolutional neural network (1-D CNN) is used to extract and combine the pattern features of one-dimensional NIRS data, and then the extracted features are used for classification. Secondly, the one-dimensional NIRS data are converted into two-dimensional spectral images, and the structure features are extracted from two-dimensional spectral images by the two-dimensional convolutional neural network (2-D CNN) method. The classification is performed by the combination of global and local training features. Finally, the influences of different network structure parameters on model identification performance are studied, and the optimal CNN models are selected and compared. The multimodal NIR-CNN identification models of tobacco origin were established by using NIRS of 5,200 tobacco samples from 10 major tobacco producing provinces in China and 3 foreign countries. The classification accuracy of 1-D CNN and 2-D CNN models was 93.15% and 93.05%, respectively, which was better than the traditional PLS-DA method. The experimental results show that the application of 1-D CNN and 2-D CNN can accurately and reliably distinguish the NIRS data, and it can be developed into a new rapid identification method of tobacco origin, which has an important promotion value.


2020 ◽  
Vol 36 (5) ◽  
pp. 743-749
Author(s):  
Xingwang Li ◽  
Xiaofei Fan ◽  
Lili Zhao ◽  
Sheng Huang ◽  
Yi He ◽  
...  

HighlightsThis study revealed the feasibility of to classify pepper seed varieties using multispectral imaging combined with one-dimensional convolutional neural network (1D-CNN).Convolutional neural networks were adopted to develop models for prediction of seed varieties, and the performance was compared with KNN and SVM.In this experiment, the classification effect of the SVM classification model is the best, but the 1D-CNN classification model is relatively easy to implement.Abstract. When non-seed materials are mixed in seeds or seed varieties of low value are mixed in high value varieties, it will cause losses to growers or businesses. Thus, the successful discrimination of seed varieties is critical for improvement of seed ralue. In recent years, convolutional neural networks (CNNs) have been used in classification of seed varieties. The feasibility of using multispectral imaging combined with one-dimensional convolutional neural network (1D-CNN) to classify pepper seed varieties was studied. The total number of three varieties of samples was 1472, and the average spectral curve between 365nm and 970nm of the three varieties was studied. The data were analyzed using full bands of the spectrum or the feature bands selected by successive projection algorithm (SPA). SPA extracted 9 feature bands from 19 bands (430, 450, 470, 490, 515, 570, 660, 780, and 880 nm). The classification accuracy of the three classification models developed with full band using K nearest neighbors (KNN), support vector machine (SVM), and 1D-CNN were 85.81%, 97.70%, and 90.50%, respectively. With full bands, SVM and 1D-CNN performed significantly better than KNN, and SVM performed slightly better than 1D-CNN. With feature bands, the testing accuracies of SVM and 1D-CNN were 97.30% and 92.6%, respectively. Although the classification accuracy of 1D-CNN was not the highest, the ease of operation made it the most feasible method for pepper seed variety prediction. Keywords: Multispectral imaging, One-dimensional convolutional neural network, Pepper seed, Variety classification.


Sign in / Sign up

Export Citation Format

Share Document