scholarly journals Robust Transmit Antenna Design for Performance Improvement of Cell-Edge Users: Approach of NOMA and Outage/Ergodic Capacity Analysis

Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4907 ◽  
Author(s):  
Dinh-Thuan Do ◽  
Chi-Bao Le ◽  
Byung Moo Lee

In this investigation, a wireless sensor network using a non-orthogonal multiple access (NOMA) system is considered in two scenarios related to the number of serving access point/base stations, where two policies provide system performance improvement in two sensors (the near user and the far user). To improve performance efficiency, two robust transmit antenna strategies are designed related to the access point/base station (BS), namely (i) Transmit Antenna Selection (TAS) mode and (ii) two base station (TBS) approach to simultaneously serve NOMA users. First, the TAS scheme is implemented to provide suboptimal outage performance for such NOMA, in which BS equipped at least two antennas while NOMA users are equippeda single antenna. Secondly, the TBS scheme is conducted to enhance the outage performance, especially considering priority evaluation for the far user in user pairs. As an important result, such far users in two proposed schemes are studied by introducing the exact closed-form expression to examine outage behavior. Accordingly, the closed-form expressions regarding ergodic capacity can be further obtained. To corroborate the exactness of these metrics, Monte Carlo simulation is performed. In addition, the proposed schemes exhibit various performance evaluations accompanied by different related parameters such as power allocation factors, the number of transmit antenna, and transmit signal-to-noise ratio (SNR).

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Byung-Jin Lee ◽  
Sang-Lim Ju ◽  
Nam-il Kim ◽  
Kyung-Seok Kim

Massive multiple-input multiple-output (MIMO) systems are a core technology designed to achieve the performance objectives defined for 5G wireless communications. They achieve high spectral efficiency, reliability, and diversity gain. However, the many radio frequency chains required in base stations equipped with a high number of transmit antennas imply high hardware costs and computational complexity. Therefore, in this paper, we investigate the use of a transmit-antenna selection scheme, with which the number of required radio frequency chains in the base station can be reduced. This paper proposes two efficient transmit-antenna selection (TAS) schemes designed to consider a trade-off between performance and computational complexity in massive MIMO systems. The spectral efficiency and computational complexity of the proposed schemes are analyzed and compared with existing TAS schemes, showing that the proposed algorithms increase the TAS performance and can be used in practical systems. Additionally, the obtained results enable a better understanding of how TAS affects massive MIMO systems.


Author(s):  
Farah Akif ◽  
Aqdas Malik ◽  
Ijaz Qureshi ◽  
Ayesha Abassi

With the advancement in wireless communication technology, the ease of accessibility and increasing coverage area is a major challenge for service providers. Network densification through Small cell Base Stations (SBS) integration in Heterogeneous Networks (HetNets) promises to improve network performance for cell edge users. Since providing wired backhaul for small cells is not cost effective or practical, the third-Generation Partnership Project (3GPP) has developed architecture for self-backhaul known as Integrated Access and Backhaul (IAB) for Fifth Generation (5G). This allows for Main Base Station (MBS) resources to be shared between SBS and MBS users. However, fair and efficient division of MBS resources remains a problem to be addressed. We develop a novel transmit antenna selection/partitioning technique for taking advantage of IAB 5G standard for Massive Multiple Input Multiple Output (MIMO) HetNets. Transmit antenna resources are divided among access for MBS users and for providing wireless backhaul for SBS. We develop A Genetic Algorithm (GA) based Transmit Antenna Selection (TAS) scheme and compare with random selection, eigenvalue-based selection and bandwidth portioning. Our analysis show that GA based TAS has the ability to converge to an optimum antenna subset providing better rate coverage. Furthermore, we also signify the performance of TAS based partitioning over bandwidth partitioning and also show user association can also be controlled using number of antennas reserved for access or backhaul.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Juan P. Peña-Martín ◽  
Juan M. Romero-Jerez

Novel closed-form expressions are derived for the performance analysis of a multiple-input multiple-output (MIMO) system in Rayleigh fading using transmit antenna selection (TAS) at the transmitter and maximal ratio combining (MRC) at the receiver. Receive antennas are assumed to be arbitrarily correlated, as no restriction is imposed on the correlation matrix. General exact and asymptotic expressions to evaluate the bit error rate (BER) of different modulation schemes are presented for uncoded transmission, and a closed-form expression is presented for the channel capacity. It is demonstrated that channel capacity may improve due to correlation at the receive antennas if the transmit array size is large enough as a result of a higher signal variability and the antenna selection performed at the transmitter. Monte Carlo simulations have been carried out to validate the analysis, showing an excellent agreement with the theoretical results.


Electronics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 36
Author(s):  
Dinh-Thuan Do ◽  
Thanh-Luan Nguyen ◽  
Byung Moo Lee

In this paper, non-orthogonal multiple access (NOMA) is studied at downlink under impact of surrounding interference. This study benefits the practical NOMA system since spatially random interference is adopted. More specifically, we consider the antenna selection strategy applied at the base station and compare the performance of two users. By applying a stochastic geometry-based model, homogeneous Poisson point process (PPP) is employed to consider the spatial topology of interference which is located near to users, and such a model is extremely suitable for practical consideration. We first consider outage probability and then ergodic capacity is examined as main metrics to recommend such model in practice. According to the considered antenna section scheme of the base station, we compare these schemes related to selected antenna serving each user. To confirm exactness of derived expressions, we perform Monte Carlo simulations to verify the analytical results.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2475 ◽  
Author(s):  
Dinh-Thuan Do ◽  
Minh-Sang Van Nguyen ◽  
Thi-Anh Hoang ◽  
Byung Moo Lee

In this paper, we investigate power domain division-based multiple access (PDMA) to support the base stations (BS) equipped with multiple antennas to serve mobile users. Such a system deploys multiple input single output (MISO)-based wireless transmission and a full-duplex (FD) scheme. Furthermore, such MISO PDMA system consists of BS employing transmit antenna selection to reduce complexity in signal processing at the receivers. We distinguish two kinds of mobile users, device-to-device (D2D) users and traditional users. In such MISO PDMA, there exists a trade-off between outage performance of each PDMA user and power allocation factors. Since the implementation of the FD scheme at PDMA users, bandwidth efficiency will be enhanced despite the existence of self-interference related to such FD. In particular, exact expressions of outage probability are derived to exhibit system performance with respect to D2D users. Finally, valuable results from the simulated parameters together with the analytical results show that MISO PDMA can improve its performance by increasing the number of transmit antennas at the BS.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 328 ◽  
Author(s):  
Chi-Bao Le ◽  
Dinh-Thuan Do ◽  
Miroslav Voznak

In this paper, we study two transmission scenarios for the base station (BS) in cellular networks to serve the far user, who is located at the cell-edge area in such a network. In particular, we show that wireless-powered non-orthogonal multiple access (NOMA) and the cell-center user in such a model can harvest energy from the BS. To overcome disadvantages of the cell-edge user due to its weak received signal, we fabricate a far NOMA user with multiple antennas to achieve performance improvement. In addition, the first scenario only considers a relay link deployed to forward signals to a far NOMA user, while both direct links and relay links are generally enabled to serve a far user in the second scenario. These situations, together with their outage performance, are analyzed and compared to provide insights in the design of a real-multiple-antenna NOMA network, in which the BS is also required to equip multiple antennas for robust quality of transmission. Higher complexity in computations is already known in consideration of outage metrics with respect to performance analysis, since the system model employs multiple antennas. To this end, we employ a transmit antenna selection (TAS) policy to formulate closed-form expressions of outage probability that satisfies the quality-of-service (QoS) requirements in the NOMA network. Our simulation results reveal that the performance of the considered system will be improved in cases of higher quantity of transmit antennas in dedicated devices. Finally, the proposed design in such a NOMA system cannot only ensure a downlink with higher quality to serve a far NOMA user, but also provide significant system performance improvement compared to a traditional NOMA networks using a single antenna.


2004 ◽  
Vol 40 (19) ◽  
pp. 1192 ◽  
Author(s):  
J. Pérez ◽  
J. Ibáñez ◽  
L. Vielva ◽  
I. Santamaría

Author(s):  
R. Rajesh ◽  
P. G. S. Velmurugan ◽  
S. J. Thiruvengadam ◽  
P. S. Mallick

In this paper, a bidirectional full-duplex amplify- and-forward (AF) relay network with multiple antennas at source nodes is proposed. Assuming that the channel state information is known at the source nodes, transmit antenna selection and maximal ratio combining (MRC) are employed when source nodes transmit information to the relay node and receive information from the relay node respectively, in order to improve the overall signal-to-interference plus noise ratio (SINR). Analytical expressions are derived for tight upper bound SINR at the relay node and source nodes upon reception. Further, losed form expressions are also derived for end-to-end outage probability of the proposed bidirectional full-duplex AF relay network in the Nakagami-m fading channel environment. Although self-interference at the relay node limits the performance of the full-duplex network, the outage performance of the proposed network is better than that of conventional bidirectional full-duplex and half-duplex AF relay networks, due to the selection diversity gain in TAS and diversity and array gain in MRC.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Xiangbin Yu ◽  
Xiaoshuai Liu ◽  
Yuyu Xin ◽  
Ming Chen ◽  
Yun Rui

The downlink performance and capacity of distributed antenna systems (DASs) with multiple receive antennas are investigated in multi-input multi-output (MIMO) fading and multicell environment. Based on the moment generating function and performance analysis, an exact closed-form expression of DAS ergodic capacity is derived, and it includes the existing capacity expression as a special case. Moreover, a simple closed-form approximate expression of ergodic capacity is also derived by using the Taylor series, and it has the performance result close to the exact expression. Besides, the outage capacity of DAS is analyzed, and an exact closed-form expression of outage capacity probability is derived. All these expressions can provide good theoretical performance evaluation for DAS. Simulation results corroborate our theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document