scholarly journals Application of Micro Quartz Tuning Fork in Trace Gas Sensing by Use of Quartz-Enhanced Photoacoustic Spectroscopy

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5240 ◽  
Author(s):  
Haoyang Lin ◽  
Zhao Huang ◽  
Ruifeng Kan ◽  
Huadan Zheng ◽  
Yihua Liu ◽  
...  

A novel quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor based on a micro quartz tuning fork (QTF) is reported. As a photoacoustic transducer, a novel micro QTF was 3.7 times smaller than the usually used standard QTF, resulting in a gas sampling volume of ~0.1 mm3. As a proof of concept, water vapor in the air was detected by using 1.39 μm distributed feedback (DFB) laser. A detailed analysis of the performance of a QEPAS sensor based on the micro QTF was performed by detecting atmosphere H2O. The laser focus position and the laser modulation depth were optimized to improve the QEPAS excitation efficiency. A pair of acoustic micro resonators (AmRs) was assembled with the micro QTF in an on-beam configuration to enhance the photoacoustic signal. The AmRs geometry was optimized to amplify the acoustic resonance. With a 1 s integration time, a normalized noise equivalent absorption coefficient (NNEA) of 1.97 × 10−8 W·cm−1·Hz−1/2 was achieved when detecting H2O at less than 1 atm.


2019 ◽  
Vol 9 (24) ◽  
pp. 5347
Author(s):  
Fagang Zhao ◽  
Yutong Gao ◽  
Lin Yang ◽  
Yuqing Yan ◽  
Jiashi Li ◽  
...  

A quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor for H2S detection operating in near-infrared spectral range is reported. The optical source is an erbium-doped fiber amplified laser with watt-level optical power. The QEPAS spectrophone is composed of a quartz tuning fork with a resonance frequency of 7.2 kHz, a quality factor of 8500, and a distance between prongs of 800 µm, and two tubes with a radius of 1.3 mm and a length of 23 mm acting as an organ pipe resonator. With this spectrophone geometry, the photothermal noise contribution of the spectrophone was removed and the theoretical thermal noise level was achieved. The position of both tubes with respect to custom quartz tuning fork has been investigated as a function of signal amplitude, Q-factor, and noise of the QEPAS sensor when a high-power laser was used. Benefit from the linearity of the QEPAS signal to the excitation laser power, a detection sensitivity of 330 ppb for H2S detection was achieved at atmospheric pressure and room temperature, when the laser power was 1.6 W and the signal integration time was set to 300 ms, corresponding to a normalized noise equivalent absorption of 3.15 × 10−9 W cm−1/(Hz)1/2. The QEPAS sensor was then validated by measuring H2S in a biogas sample.



Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5565 ◽  
Author(s):  
Roman Rousseau ◽  
Nicolas Maurin ◽  
Wioletta Trzpil ◽  
Michael Bahriz ◽  
Aurore Vicet

The quartz tuning fork (QTF) is a piezoelectric transducer with a high quality factor that was successfully employed in sensitive applications such as atomic force microscopy or Quartz-Enhanced Photo-Acoustic Spectroscopy (QEPAS). The variability of the environment (temperature, humidity) can lead to a drift of the QTF resonance. In most applications, regular QTF calibration is absolutely essential. Because the requirements vary greatly depending on the field of application, different characterization methods can be found in the literature. We present a review of these methods and compare them in terms of accuracy. Then, we further detail one technique, called Beat Frequency analysis, based on the transient response followed by heterodyning. This method proved to be fast and accurate. Further, we demonstrate the resonance tracking of the QTF while changing the temperature and the humidity. Finally, we integrate this characterization method in our Resonance Tracking (RT) QEPAS sensor and show the significant reduction of the signal drift compared to a conventional QEPAS sensor.



2020 ◽  
Vol 28 (4) ◽  
pp. 236-242
Author(s):  
Shenlong Zha ◽  
Hongliang Ma ◽  
Changli Zha ◽  
Xueyuan Cai ◽  
Yuanyuan Li ◽  
...  

A novel photoacoustic spectroscopy gas sensor based on a micro-resonator has been developed. The photoacoustic cell was designed and fabricated using 3-D printing and the photoacoustic cell volume was compressed significantly. This design greatly reduces the time of manufacturing the micro-resonator and the weight was lighter compared to traditional cells. Furthermore, the acoustic pressure distribution in the 3-D printed photoacoustic cell was analyzed by COMSOL Multiphysics software, which indicated that the strongest acoustic pressure occurred in the middle of the resonant cavity. The performance of the sensor was evaluated by detection of CH4 at normal atmospheric pressure used a near infrared distributed feedback laser emitted at 1653 nm. The characteristic of the photoacoustic signal under different pressures was also investigated. An Allan variance shows that the 3-D printed photoacoustic spectroscopy sensor has the detection limit of 1.44 ppmv (3σ) for CH4 detection at about 200 s integration time.



2020 ◽  
Vol 10 (7) ◽  
pp. 2447 ◽  
Author(s):  
Fabrizio Sgobba ◽  
Giansergio Menduni ◽  
Stefano Dello Russo ◽  
Angelo Sampaolo ◽  
Pietro Patimisco ◽  
...  

In this paper the performances of two spectrophones for quartz-enhanced photoacoustic spectroscopy (QEPAS)-based ethane gas sensing were tested and compared. Each spectrophone contains a quartz tuning fork (QTF) acoustically coupled with a pair of micro-resonator tubes and having a fundamental mode resonance frequency of 32.7 kHz (standard QTF) and 12.4 kHz (custom QTF), respectively. The spectrophones were implemented into a QEPAS acoustic detection module (ADM) together with a preamplifier having a gain bandwidth optimized for the respective QTF resonance frequency. Each ADM was tested for ethane QEPAS sensing, employing a custom pigtailed laser diode emitting at ~1684 nm as the exciting light source. By flowing 1% ethane at atmospheric pressure, a signal-to-noise ratio of 453.2 was measured by implementing the 12.4 kHz QTF-based ADM, ~3.3 times greater than the value obtained using a standard QTF. The minimum ethane concentration detectable using a 100 ms lock-in integration time achieving the 12.4 kHz custom QTF was 22 ppm.



2007 ◽  
Vol 32 (9) ◽  
pp. 1177 ◽  
Author(s):  
Mark C. Phillips ◽  
Tanya L. Myers ◽  
Michael D. Wojcik ◽  
Bret D. Cannon


2016 ◽  
Vol 233 ◽  
pp. 388-393 ◽  
Author(s):  
Yufei Ma ◽  
Ying He ◽  
Xin Yu ◽  
Cheng Chen ◽  
Rui Sun ◽  
...  


2019 ◽  
Vol 27 (24) ◽  
pp. 35267 ◽  
Author(s):  
Shangzhi Li ◽  
Hongpeng Wu ◽  
Ruyue Cui ◽  
Angelo Sampaolo ◽  
Pietro Patimisco ◽  
...  


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2047 ◽  
Author(s):  
Yu-Fei Ma ◽  
Yao Tong ◽  
Ying He ◽  
Jin-Hu Long ◽  
Xin Yu




Sign in / Sign up

Export Citation Format

Share Document