scholarly journals When Sensor-Cloud Meets Mobile Edge Computing

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5324 ◽  
Author(s):  
Tian Wang ◽  
Yucheng Lu ◽  
Zhihan Cao ◽  
Lei Shu ◽  
Xi Zheng ◽  
...  

Sensor-clouds are a combination of wireless sensor networks (WSNs) and cloud computing. The emergence of sensor-clouds has greatly enhanced the computing power and storage capacity of traditional WSNs via exploiting the advantages of cloud computing in resource utilization. However, there are still many problems to be solved in sensor-clouds, such as the limitations of WSNs in terms of communication and energy, the high latency, and the security and privacy issues due to applying a cloud platform as the data processing and control center. In recent years, mobile edge computing has received increasing attention from industry and academia. The core of mobile edge computing is to migrate some or all of the computing tasks of the original cloud computing center to the vicinity of the data source, which gives mobile edge computing great potential in solving the shortcomings of sensor-clouds. In this paper, the latest research status of sensor-clouds is briefly analyzed and the characteristics of the existing sensor-clouds are summarized. After that we discuss the issues of sensor-clouds and propose some applications, especially a trust evaluation mechanism and trustworthy data collection which use mobile edge computing to solve the problems in sensor-clouds. Finally, we discuss research challenges and future research directions in leveraging mobile edge computing for sensor-clouds.

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Changqing Gong ◽  
Mengfei Li ◽  
Liang Zhao ◽  
Zhenzhou Guo ◽  
Guangjie Han

With the rapid development of the 5G network and Internet of Things (IoT), lots of mobile and IoT devices generate massive amounts of multisource heterogeneous data. Effective processing of such data becomes an urgent problem. However, traditional centralised models of cloud computing are challenging to process multisource heterogeneous data effectively. Mobile edge computing (MEC) emerges as a new technology to optimise applications or cloud computing systems. However, the features of MEC such as content perception, real-time computing, and parallel processing make the data security and privacy issues that exist in the cloud computing environment more prominent. Protecting sensitive data through traditional encryption is a very secure method, but this will make it impossible for the MEC to calculate the encrypted data. The fully homomorphic encryption (FHE) overcomes this limitation. FHE can be used to compute ciphertext directly. Therefore, we propose a ciphertext arithmetic operation that implements data with integer homomorphic encryption to ensure data privacy and computability. Our scheme refers to the integer operation rules of complement, addition, subtraction, multiplication, and division. First, we use Boolean polynomials (BP) of containing logical AND, XOR operations to represent the rulers. Second, we convert the BP into homomorphic polynomials (HP) to perform ciphertext operations. Then, we optimise our scheme. We divide the ciphertext vector of integer encryption into subvectors of length 2 and increase the length of private key of FHE to support the 3-multiplication level additional. We test our optimised scheme in DGHV and CMNT. In the number of ciphertext refreshes, the optimised scheme is reduced by 2/3 compared to the original scheme, and the time overhead of our scheme is reduced by 1/3. We also examine our scheme in CNT of without bootstrapping. The time overhead of optimised scheme over DGHV and CMNT is close to the original scheme over CNT.


Author(s):  
C. Anuradha, M. Ponnavaikko

Cloud computing provides a platform for services and resources over the internet for users. The large pool of data resources and services has enabled the emergence of several novel applications such as smart grids, smart environments, and virtual reality. However, the state-of-the-art of cloud computing faces a delay constraint, which becomes a major barrier for reliable cloud services. This constraint is mostly highlighted in the case of smart cities (SC) and the Internet of Things (IoT). Therefore, the recent cloud computing paradigm has poor performance and cannot meet the low delay, navigation, and mobility support requirements.Machine-to-machine (M2M) connectivity has drawn considerable interest from both academia and industry with a growing number of machine-type communication devices (MTCDs). The data links with M2M communications are usually small but high bandwidth, unlike conventional networking networks, demanding performance management of both energy consumption and computing. The main challenges faced in mobile edge computing are task offloading, congestion control, Resource allocation, security and privacy issue, mobility and standardization .Our work mainly focus on offloading based resource allocation and security issues by analyzing the network parameters like reduction of latency and improvisation of bandwidth involved in cloud environment. The cloudsim simulation tool has been utilized to implement the offload balancing mechanism to decrease the energy consumption and optimize the computing resource allocation as well as improve computing capability.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Kai Peng ◽  
Victor C. M. Leung ◽  
Xiaolong Xu ◽  
Lixin Zheng ◽  
Jiabin Wang ◽  
...  

Mobile cloud computing (MCC) integrates cloud computing (CC) into mobile networks, prolonging the battery life of the mobile users (MUs). However, this mode may cause significant execution delay. To address the delay issue, a new mode known as mobile edge computing (MEC) has been proposed. MEC provides computing and storage service for the edge of network, which enables MUs to execute applications efficiently and meet the delay requirements. In this paper, we present a comprehensive survey of the MEC research from the perspective of service adoption and provision. We first describe the overview of MEC, including the definition, architecture, and service of MEC. After that we review the existing MUs-oriented service adoption of MEC, i.e., offloading. More specifically, the study on offloading is divided into two key taxonomies: computation offloading and data offloading. In addition, each of them is further divided into single MU offloading scheme and multi-MU offloading scheme. Then we survey edge server- (ES-) oriented service provision, including technical indicators, ES placement, and resource allocation. In addition, other issues like applications on MEC and open issues are investigated. Finally, we conclude the paper.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 76541-76567 ◽  
Author(s):  
Muktar Yahuza ◽  
Mohd Yamani Idna Bin Idris ◽  
Ainuddin Wahid Bin Abdul Wahab ◽  
Anthony T. S. Ho ◽  
Suleman Khan ◽  
...  

2020 ◽  
Vol 10 (3) ◽  
pp. 17-53
Author(s):  
Ahmad Al-Nawasrah ◽  
Ammar Ali Almomani ◽  
Samer Atawneh ◽  
Mohammad Alauthman

A botnet refers to a set of compromised machines controlled distantly by an attacker. Botnets are considered the basis of numerous security threats around the world. Command and control (C&C) servers are the backbone of botnet communications, in which bots send a report to the botmaster, and the latter sends attack orders to those bots. Botnets are also categorized according to their C&C protocols, such as internet relay chat (IRC) and peer-to-peer (P2P) botnets. A domain name system (DNS) method known as fast-flux is used by bot herders to cover malicious botnet activities and increase the lifetime of malicious servers by quickly changing the IP addresses of the domain names over time. Several methods have been suggested to detect fast-flux domains. However, these methods achieve low detection accuracy, especially for zero-day domains. They also entail a significantly long detection time and consume high memory storage. In this survey, we present an overview of the various techniques used to detect fast-flux domains according to solution scopes, namely, host-based, router-based, DNS-based, and cloud computing techniques. This survey provides an understanding of the problem, its current solution space, and the future research directions expected.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Fanrong Kong ◽  
Hongxia Lu

Rural cooperative financial organization is a new type of cooperative financial organization in recent years. It is a community financial institution created by farmers and small rural enterprises to voluntarily invest in shares in order to meet the growing demand for rural financing. However, this financial organization has many flaws in the design of the system; it has not promoted the better development of rural mutual fund assistance. In addition, mobile edge computing (MEC) can be used as an effective supplement to mobile cloud computing and has been proposed. However, most of the current literature studies on cloud computing provide computing offload just to propose a network architecture, without modeling and solving to achieve. In this context, this paper focuses on the practical application of MEC in the risk control of new rural cooperative financial organizations. This paper proposes a collaborative LECC mechanism based on machine learning under the MEC architecture. The experimental simulation shows that the HR under the LECC mechanism is about 17%–23%, 46%–69%, and 93%–177% higher than that of LENC, LRU, and RR, respectively. It is unrealistic to want to rely on meager loan interest for long-term development. The most practical way is to increase the income level of the organization itself.


Author(s):  
Atiqur Rahman ◽  
Guangfu Wu ◽  
Ali Md Liton

Nowadays, the masonry for environment-friendly and protected network structure designs, for example, the Internet of Things and gigantic data analytics are increasing at a faster pace compared to an earlier state. Mobile edge computing for an Internet of Things widget is information processing that is achieved at or close to the collectors of information in an Internet of Things system. Herein, we are proposing to temporarily evaluation the concepts, features, protection, and privacy applications of Internet of Things authorized mobile edge computing with its data protection view in our data-driven globe. We focus on illuminating one of kind components that need to be taken into consideration whilst creating a scalable, consistent, impenetrable and disseminated mobile edge computing structure. We also sum up the fundamental ideas regarding security threat alleviation strategies. After that, we walk around the existing challenges and opportunities in the area of mobile edge computing. In conclusion, we analyze a case study, in which a security protection mechanism can be hardened to lift out everyday jobs.


Author(s):  
Xianyu Meng ◽  
Wei Lu

Mobile edge computing (MEC) provides users with low-latency, high-bandwidth, and high-reliability services by migrating the computing power of the cloud computing center to the edge of the network. It is thus being considered an effective solution for the contradiction between the limited computing capabilities of Internet of Things (IoT) devices and the rapid development of delay-sensitive real-time applications. In this study, we propose and design a container union file system based on the differencing hard disk and dynamic loading strategy to address the excessively long migration time caused by the bundling transmission of the file system and container images during container-based service migration. The proposed method involves designing a mechanism based on a remote dynamic loading strategy to avoid the downloading of all container images, thereby reducing the long preparation time before which stateless migration can begin. Furthermore, in view of the excessive latency of the edge service during the stateful migration process, a strategy for avoiding the transmission of the underlying file system and container images is designed to optimize the service interruption time and service quality degradation time. Experiments show that the proposed method and strategy can effectively reduce the migration time of container-based services.


Author(s):  
Varun G. Menon ◽  
Joe Prathap

In recent years Vehicular Ad Hoc Networks (VANETs) have received increased attention due to its numerous applications in cooperative collision warning and traffic alert broadcasting. VANETs have been depending on cloud computing for networking, computing and data storage services. Emergence of advanced vehicular applications has led to the increased demand for powerful communication and computation facilities with low latency. With cloud computing unable to satisfy these demands, the focus has shifted to bring computation and communication facilities nearer to the vehicles, leading to the emergence of Vehicular Fog Computing (VFC). VFC installs highly virtualized computing and storage facilities at the proximity of these vehicles. The integration of fog computing into VANETs comes with a number of challenges that range from improved quality of service, security and privacy of data to efficient resource management. This paper presents an overview of this promising technology and discusses the issues and challenges in its implementation with future research directions.


Sign in / Sign up

Export Citation Format

Share Document