scholarly journals Method for Classifying Behavior of Livestock on Fenced Temperate Rangeland in Northern China

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5334 ◽  
Author(s):  
Gou ◽  
Tsunekawa ◽  
Peng ◽  
Zhao ◽  
Li ◽  
...  

Different livestock behaviors have distinct effects on grassland degradation. However, because direct observation of livestock behavior is time- and labor-intensive, an automated methodology to classify livestock behavior according to animal position and posture is necessary. We applied the Random Forest algorithm to predict livestock behaviors in the Horqin Sand Land by using Global Positioning System (GPS) and tri-axis accelerometer data and then confirmed the results through field observations. The overall accuracy of GPS models was 85% to 90% when the time interval was greater than 300–800 s, which was approximated to the tri-axis model (96%) and GPS-tri models (96%). In the GPS model, the linear backward or forward distance were the most important determinants of behavior classification, and nongrazing was less than 30% when livestock travelled more than 30–50 m over a 5-min interval. For the tri-axis accelerometer model, the anteroposterior acceleration (–3 m/s2) of neck movement was the most accurate determinant of livestock behavior classification. Using instantaneous acceleration of livestock body movement more precisely classified livestock behaviors than did GPS location-based distance metrics. When a tri-axis model is unavailable, GPS models will yield sufficiently reliable classification accuracy when an appropriate time interval is defined.

CATENA ◽  
2016 ◽  
Vol 139 ◽  
pp. 82-91 ◽  
Author(s):  
Xinping Liu ◽  
Yuhui He ◽  
Xueyong Zhao ◽  
Tonghui Zhang ◽  
Yulin Li ◽  
...  

2019 ◽  
Vol 14 (No. 4) ◽  
pp. 229-239 ◽  
Author(s):  
Xueya Zhou ◽  
Dexin Guan ◽  
Jiabing Wu ◽  
Fenghui Yuan ◽  
Anzhi Wang ◽  
...  

Soil water dynamic is considered an important process for water resource and plantation management in Horqin Sand Land, northern China. In this study, soil water content simulated by the SWMS-2D model was used to systematically analyse soil water dynamics and explore the relationship between soil water and rainfall among micro-landforms (i.e., top, upslope, midslope, toeslope, and bottomland) and 0–200 cm soil depths during the growing season of 2013 and 2015. The results showed that soil water dynamics in 0–20 cm depths were closely linked to rainfall patterns, whereas soil water content in 20–80 cm depths illustrated a slight decline in addition to fluctuations caused by rainfall. At the top position, the soil water content in different ranges of depths (20–40 and 80–200 cm) was near the wilting point, and hence some branches, and even entire plants exhibited diebacks. At the upslope or midslope positions, the soil water content in 20–80 or 80–200 cm depths was higher than at the top position. Soil water content was higher at the toeslope and bottomland positions than at other micro-landforms, and deep caliche layers had a positive feedback effect on shrub establishment. Soil water recharge by rainfall was closely related to rainfall intensity and micro-landforms. Only rainfalls &gt; 20 mm significantly increased water content in &gt; 40 cm soil depths, but deeper water recharge occurred at the toeslope position. A linear equation was fitted to the relationship between soil water and antecedent rainfall, and the slopes and R<sup>2</sup> of the equations were different among micro-landforms and soil depths. The linear equations generally fitted well in 0–20 and 20–40 cm depths at the top, upslope, midslope, and toeslope positions (R<sup>2</sup> value of about 0.60), with soil water in 0–20 cm depths showing greater responses to rainfall (average slope of 0.189). In 20–40 cm depths, the response was larger at the toeslope position, with a slope of 0.137. In 40–80 cm depths, a good linear fit with a slope of 0.041 was only recorded at the toeslope position. This study provides a soil water basis for ecological restoration in similar regions.  


2012 ◽  
Vol 67 (5) ◽  
pp. 1547-1556 ◽  
Author(s):  
Xiaoan Zuo ◽  
Xueyong Zhao ◽  
Shaokun Wang ◽  
Yuqiang Li ◽  
Jie Lian ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 2103
Author(s):  
Yuchen Liu ◽  
Jia Liu ◽  
Chuanzhe Li ◽  
Fuliang Yu ◽  
Wei Wang

An attempt was made to evaluate the impact of assimilating Doppler Weather Radar (DWR) reflectivity together with Global Telecommunication System (GTS) data in the three-dimensional variational data assimilation (3DVAR) system of the Weather Research Forecast (WRF) model on rain storm prediction in Daqinghe basin of northern China. The aim of this study was to explore the potential effects of data assimilation frequency and to evaluate the outputs from different domain resolutions in improving the meso-scale NWP rainfall products. In this study, four numerical experiments (no assimilation, 1 and 6 h assimilation time interval with DWR and GTS at 1 km horizontal resolution, 6 h assimilation time interval with radar reflectivity, and GTS data at 3 km horizontal resolution) are carried out to evaluate the impact of data assimilation on prediction of convective rain storms. The results show that the assimilation of radar reflectivity and GTS data collectively enhanced the performance of the WRF-3DVAR system over the Beijing-Tianjin-Hebei region of northern China. It is indicated by the experimental results that the rapid update assimilation has a positive impact on the prediction of the location, tendency, and development of rain storms associated with the study area. In order to explore the influence of data assimilation in the outer domain on the output of the inner domain, the rainfall outputs of 3 and 1 km resolution are compared. The results show that the data assimilation in the outer domain has a positive effect on the output of the inner domain. Since the 3DVAR system is able to analyze certain small-scale and convective-scale features through the incorporation of radar observations, hourly assimilation time interval does not always significantly improve precipitation forecasts because of the inaccurate radar reflectivity observations. Therefore, before data assimilation, the validity of assimilation data should be judged as far as possible in advance, which can not only improve the prediction accuracy, but also improve the assimilation efficiency.


2007 ◽  
Vol 31 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Ha-Lin Zhao ◽  
Rui-Lian Zhou ◽  
Yong-Zhong Su ◽  
Hua Zhang ◽  
Li-Ya Zhao ◽  
...  

2016 ◽  
Vol 11 (3) ◽  
Author(s):  
Bart Dewulf ◽  
Tijs Neutens ◽  
Delfien Van Dyck ◽  
Ilse De Bourdeaudhuij ◽  
Steven Broekx ◽  
...  

Physical activity is an important facilitator for health and wellbeing, especially for late middle-aged adults, who are more susceptible to cardiovascular diseases. Physical activity performed in green areas is supposed to be particularly beneficial, so we studied whether late middle- aged adults are more active in green areas than in non-green areas and how this is influenced by individual characteristics and the level of neighbourhood greenness. We tracked 180 late middle-aged (58 to 65 years) adults using global positioning system and accelerometer data to know whether and where they were sedentary or active. These data were combined with information on land use to obtain information on the greenness of sedentary and active hotspots. We found that late middle-aged adults are more physically active when spending more time in green areas than in non-green areas. Spending more time at home and in non-green areas was found to be associated with more sedentary behaviour. Time spent in non-green areas was found to be related to more moderate-to-vigorous physical activity (MVPA) for males and to less MVPA for females. The positive association between time spent in green areas and MVPA was the strongest for highly educated people and for those living in a green neighbourhood. This study shows that the combined use of global positioning system and accelerometer data facilitates understanding of where people are sedentary or physically active, which can help policy makers encourage activity in this age cohort.


2000 ◽  
Vol 80 (3) ◽  
pp. 405-413 ◽  
Author(s):  
L.W. Turner ◽  
M.C. Udal ◽  
B. T. Larson ◽  
S.A. Shearer

Precision agriculture is already being used commercially to improve variability management in row crop agriculture. In the same way, understanding how spatial and temporal variability of animal, forage, soil and landscape features affect grazing behavior and forage utilization provides potential to modify pasture management, improve efficiency of utilization, and maximize profits. Recent advances in global positioning system (GPS) technology have allowed the development of lightweight GPS collar receivers suitable for monitoring animal position at 5-min intervals. The GPS data can be imported into a geographic information system (GIS) to assess animal behavior characteristics and pasture utilization. This paper describes application and use of GPS technology on intensively managed beef cattle, and implications for livestock behavior and management research on pasture. Key words: Livestock behavior, electronics, grazing, forage, global positioning system, geographic information system


Sign in / Sign up

Export Citation Format

Share Document