scholarly journals CO2 and O2 Detection by Electric Field Sensors

Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 668 ◽  
Author(s):  
Marco Santonico ◽  
Alessandro Zompanti ◽  
Anna Sabatini ◽  
Luca Vollero ◽  
Simone Grasso ◽  
...  

In this work an array of chemical sensors for gas detection has been developed, starting with a commercial sensor platform developed by Microchip (GestIC), which is normally used to detect, trace, and classify hand movements in space. The system is based on electric field changes, and in this work, it has been used as mechanism revealing the adsorption of chemical species CO2 and O2. The system is composed of five electrodes, and their responses were obtained by interfacing the sensors with an acquisition board based on an ATMEGA 328 microprocessor (Atmel MEGA AVR microcontroller). A dedicated measurement chamber was designed and prototyped in acrylonitrile butadiene styrene (ABS) using an Ultimaker3 3D printer. The measurement cell size is 120 × 85 mm. Anthocyanins (red rose) were used as a sensing material in order to functionalize the sensor surface. The sensor was calibrated using different concentrations of oxygen and carbon dioxide, ranging from 5% to 25%, mixed with water vapor in the range from 50% to 90%. The sensor exhibits good repeatability for CO2 concentrations. To better understand the sensor response characteristics, sensitivity and resolution were calculated from the response curves at different working points. The sensitivity is in the order of magnitude of tens to hundreds of µV/% for CO2, and of µV/% in the case of O2. The resolution is in the range of 10−1%–10−3% for CO2, and it is around 10−1% for O2. The system could be specialized for different fields, for environmental, medical, and food applications.

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 732
Author(s):  
Anna P. Gardymova ◽  
Mikhail N. Krakhalev ◽  
Victor Ya. Zyryanov ◽  
Alexandra A. Gruzdenko ◽  
Andrey A. Alekseev ◽  
...  

The electro-optical properties of polymer dispersed liquid crystal (PDLC) films are highly dependent on the features of the contained liquid crystal (LC) droplets. Cholesteric LC droplets with homeotropic boundaries can form several topologically different orientational structures, including ones with single and more point defects, layer-like, and axisymmetric twisted toroidal structures. These structures are very sensitive to an applied electric field. In this work, we have demonstrated experimentally and by computer simulations that twisted toroidal droplets reveal strong structural response to the electric field. In turn, this leads to vivid changes in the optical texture in crossed polarizers. The response of droplets of different sizes were found to be equivalent in terms of dimensionless parameters. In addition, the explanation of this phenomenon showed a comparison of theoretical and experimental structural response curves aids to determine the shape of the droplet. Finally, we demonstrated that the addition of a dichroic dye allows such films to be used as optical filters with adjustable color even without polarizers.


2021 ◽  
Vol 2 ◽  
pp. 1-13
Author(s):  
Charles T. Fancher ◽  
David R. Scherer ◽  
Marc C. St. John ◽  
Bonnie L. Schmittberger Marlow

2021 ◽  
Vol 7 (5) ◽  
pp. eabe2892
Author(s):  
Dmitry Shcherbakov ◽  
Petr Stepanov ◽  
Shahriar Memaran ◽  
Yaxian Wang ◽  
Yan Xin ◽  
...  

Spin-orbit coupling (SOC) is a relativistic effect, where an electron moving in an electric field experiences an effective magnetic field in its rest frame. In crystals without inversion symmetry, it lifts the spin degeneracy and leads to many magnetic, spintronic, and topological phenomena and applications. In bulk materials, SOC strength is a constant. Here, we demonstrate SOC and intrinsic spin splitting in atomically thin InSe, which can be modified over a broad range. From quantum oscillations, we establish that the SOC parameter α is thickness dependent; it can be continuously modulated by an out-of-plane electric field, achieving intrinsic spin splitting tunable between 0 and 20 meV. Unexpectedly, α could be enhanced by an order of magnitude in some devices, suggesting that SOC can be further manipulated. Our work highlights the extraordinary tunability of SOC in 2D materials, which can be harnessed for in operando spintronic and topological devices and applications.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1051 ◽  
Author(s):  
Raitis Sondors ◽  
Jelena Kosmaca ◽  
Gunta Kunakova ◽  
Liga Jasulaneca ◽  
Matiss Martins Ramma ◽  
...  

Size distribution, Young’s moduli and electrical resistivity are investigated for CuO nanowires synthesized by different thermal oxidation methods. Oxidation in dry and wet air were applied for synthesis both with and without an external electrical field. An increased yield of high aspect ratio nanowires with diameters below 100 nm is achieved by combining applied electric field and growth conditions with additional water vapour at the first stage of synthesis. Young’s moduli determined from resonance and bending experiments show similar diameter dependencies and increase above 200 GPa for nanowires with diameters narrower than 50 nm. The nanowires synthesized by simple thermal oxidation possess electrical resistivities about one order of magnitude lower than the nanowires synthesized by electric field assisted approach in wet air. The high aspect ratio, mechanical strength and robust electrical properties suggest CuO nanowires as promising candidates for NEMS actuators.


Author(s):  
Dominic Thaler ◽  
Nahal Aliheidari ◽  
Amir Ameli

Additive manufacturing is an emerging method to produce customized parts with functional materials without big investments. As one of the common additive manufacturing methods, fused deposition modeling (FDM) uses thermoplastic-based feedstock. It has been recently adapted to fabricate composite materials too. Acrylonitrile butadiene styrene (ABS) is the most widely used material as FDM feedstock. However, it is an electrically insulating polymer. Carbon Nanotubes (CNTs) on the other hand are highly conductive. They are attractive fillers because of their high aspect ratio, and excellent mechanical and physical properties. Therefore, a nanocomposite of these two materials can give an electrically conductive material that is potentially compatible with FDM printing. This work focuses on the investigation of the relationships between the FDM process parameters and the electrical conductivity of the printed ABS/CNT nanocomposites. Nanocomposite filaments with CNT contents up to 10wt% were produced using a twin-screw extruder followed by 3D printing using FDM method. The starting material was pellets from a masterbatch containing 15 wt% CNT. Compression-molded samples of ABS/CNT were also prepared as the bulk baselines. The effects of CNT content and nozzle size on the through-layer and in-layer electrical conductivity of the printed nanocomposites were analyzed. Overall, a higher percolation threshold was observed in the printed samples, compared to that of the compression-molded counterparts. This resulted in the conductivity of the printed samples that is at least one order of magnitude lower. Moreover, at CNT contents up to 5 wt%, the in-layer conductivity of the printed samples was almost two orders of magnitudes higher than that in the through-layer direction. In ABS/3 wt% CNT samples, the through-layer conductivity continuously decreased as the nozzle diameter was decreased from 0.8 mm to 0.35 mm. These variations in the electrical conductivity were explained in terms of the CNT alignment, caused by the extrusion process during the print, quality of interlayer bonding during deposition, and the voids created due to the discrete nature of the printing process.


through tubing and fittings made of PTFE. Analysis was undertaken by the Warren Spring Laboratory of the Department of Trade and Industry, according to the method described by Bailey and Bedbo rough The results are shown in Table IV. and plotted in Fig. 3. and 4. Table IV. Variation of odour strength of extracted samples with volune of eluted air Volume of air Strength of odour samples passing through (dilutions) sludge before sampling (1/1) Raw sludge Digested sludge 0 154 000 9 900 11.1 53 000 350 22.2 30 600 270 55.6 15 500 190 111 8 200 160 It is clear from these results that there is considerable die-off of odour strength with time, and that, as would be expected, the anaerobic digestion of sludge can reduce the odour potential by at least one order of magnitude. To illustrate the importance of this die-off effect, the results have been re-plotted in Fig. 5. in a cunulative form; that is to say as cumulative percentage of the eventual colour release against volume of air. In the case of the raw sewage sludge, 38% of the ultimate odour was carried in the first odour sample, and 90% of the odour had been extracted by the passage of about 200 1. In the case of the anaerobically digested sludge, the same effect is much more marked; 72% of the ultimate odour was carried by the first sample, and thereafter the strength of the odour fell off very rapidly. There are two possible explanations for this. First, it can be postulated that as it is known that many of the important odorous chemical species are highly volatile, they may be only physically trapped in the sludge, and need little encouragement to transfer to the atmosphere. An alternative explanation concerns the existence of two equilibria. As the vapour/liquid equilibrium is disturbed by the passage of air, the concentration of dissolved compounds in the liquid phase falls, disturbing the ’solid’/liquid equilibrium The kinetics of transfer across this latter phase boundary are much slower than for the liquid/vapour transfer, so that the extraction of odour becomes limited by the rate of diffusion into the liquid phase. Two observations may be cited as evidence for this latter view. First, when sludge is applied to land, there is a rapid tail-off of odour nuisance after spreading. Hie incidence of rain after a dry period is known to result in an increased evolution of odour. Second, in earlier experiments samples of sludge were centrifuged, and the supernatant liquor discarded and replaced by tap water, before being used in the standard odour potential test. Some re-extraction of odour from the samples was rapidly found. In practice, both postulated mechanisms are probably at work, especially if the concept of ’solid/liquid equilibrium’ be extended to


2013 ◽  
Vol 760-762 ◽  
pp. 302-305
Author(s):  
Wei Kai Xu ◽  
Ying Chun Tang ◽  
Wei Wang

By using the numerical simulation techniques, the response characteristics of single split-ring resonator (SRR) in a broadband terahertz region are analyzed. We examine the transmission and dispersion characteristics of the SRR and show that there are different resonances while changing the orientations of electric field vector relative to the gap-bearing sides. Two significant resonances corresponding to electric response and magnetic response will be observed while the electric field vector perpendicular to the gap-bearing side, and only one electric resonance occurs when the electric field vector parallel to the same side. This will be a reference to design the possible terahertz metamaterials.


Sign in / Sign up

Export Citation Format

Share Document