scholarly journals Assessment of the Potential of Wrist-Worn Wearable Sensors for Driver Drowsiness Detection

Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1029 ◽  
Author(s):  
Thomas Kundinger ◽  
Nikoletta Sofra ◽  
Andreas Riener

Drowsy driving imposes a high safety risk. Current systems often use driving behavior parameters for driver drowsiness detection. The continuous driving automation reduces the availability of these parameters, therefore reducing the scope of such methods. Especially, techniques that include physiological measurements seem to be a promising alternative. However, in a dynamic environment such as driving, only non- or minimal intrusive methods are accepted, and vibrations from the roadbed could lead to degraded sensor technology. This work contributes to driver drowsiness detection with a machine learning approach applied solely to physiological data collected from a non-intrusive retrofittable system in the form of a wrist-worn wearable sensor. To check accuracy and feasibility, results are compared with reference data from a medical-grade ECG device. A user study with 30 participants in a high-fidelity driving simulator was conducted. Several machine learning algorithms for binary classification were applied in user-dependent and independent tests. Results provide evidence that the non-intrusive setting achieves a similar accuracy as compared to the medical-grade device, and high accuracies (>92%) could be achieved, especially in a user-dependent scenario. The proposed approach offers new possibilities for human–machine interaction in a car and especially for driver state monitoring in the field of automated driving.

2020 ◽  
Vol 10 (8) ◽  
pp. 2890
Author(s):  
Jongseong Gwak ◽  
Akinari Hirao ◽  
Motoki Shino

Drowsy driving is one of the main causes of traffic accidents. To reduce such accidents, early detection of drowsy driving is needed. In previous studies, it was shown that driver drowsiness affected driving performance, behavioral indices, and physiological indices. The purpose of this study is to investigate the feasibility of classification of the alert states of drivers, particularly the slightly drowsy state, based on hybrid sensing of vehicle-based, behavioral, and physiological indicators with consideration for the implementation of these identifications into a detection system. First, we measured the drowsiness level, driving performance, physiological signals (from electroencephalogram and electrocardiogram results), and behavioral indices of a driver using a driving simulator and driver monitoring system. Next, driver alert and drowsy states were identified by machine learning algorithms, and a dataset was constructed from the extracted indices over a period of 10 s. Finally, ensemble algorithms were used for classification. The results showed that the ensemble algorithm can obtain 82.4% classification accuracy using hybrid methods to identify the alert and slightly drowsy states, and 95.4% accuracy classifying the alert and moderately drowsy states. Additionally, the results show that the random forest algorithm can obtain 78.7% accuracy when classifying the alert vs. slightly drowsy states if physiological indicators are excluded and can obtain 89.8% accuracy when classifying the alert vs. moderately drowsy states. These results represent the feasibility of highly accurate early detection of driver drowsiness and the feasibility of implementing a driver drowsiness detection system based on hybrid sensing using non-contact sensors.


Author(s):  
Thomas Kundinger ◽  
Phani Krishna Yalavarthi ◽  
Andreas Riener ◽  
Philipp Wintersberger ◽  
Clemens Schartmüller

Purpose Drowsiness is a common cause of severe road accidents. Therefore, numerous drowsiness detection methods were developed and explored in recent years, especially concepts using physiological measurements achieved promising results. Nevertheless, existing systems have some limitations that hinder their use in vehicles. To overcome these limitations, this paper aims to investigate the development of a low-cost, non-invasive drowsiness detection system, using physiological signals obtained from conventional wearable devices. Design/methodology/approach Two simulator studies, the first study in a low-level driving simulator (N = 10) to check feasibility and efficiency, and the second study in a high-fidelity driving simulator (N = 30) including two age groups, were conducted. An algorithm was developed to extract features from the heart rate signals and a data set was created by labelling these features according to the identified driver state in the simulator study. Using this data set, binary classifiers were trained and tested using various machine learning algorithms. Findings The trained classifiers reached a classification accuracy of 99.9%, which is similar to the results obtained by the studies which used intrusive electrodes to detect ECG. The results revealed that heart rate patterns are sensitive to the drivers’ age, i.e. models trained with data from one age group are not efficient in detecting drowsiness for another age group, suggesting to develop universal driver models with data from different age groups combined with individual driver models. Originality/value This work investigated the feasibility of driver drowsiness detection by solely using physiological data from wrist-worn wearable devices, such as smartwatches or fitness trackers that are readily available in the consumer market. It was found that such devices are reliable in drowsiness detection.


Road crashes are the most common forms of accidents and deaths worldwide, and the significant reasons for these accidents are usually drunken, drowsiness and reckless behaviour of the driver. According to the World Health Organization, road traffic injuries have risen to 1.25 billion worldwide, which makes driver drowsiness detection a major potential area to avert numerous sleep-induced road accidents. This project proposes an idea to detect drowsiness using machine learning algorithms, hence alarming the driver in real-time to prevent a collision. The model uses the Haar Cascade algorithm, along with the OpenCV library to monitor the real-time video of the driver and to detect the eyes of the driver. The system uses the Eye Aspect Ratio (EAR) concept to determine if the eyes are open or closed. We also feed a data-set file consisting of the facial features data-points to train the machine learning algorithm. The model inspects each frame of the video, which helps to recognize the state of the driver. Furthermore, a Raspberry Pi single-board computer, combined with a camera module and an alarm system, facilitates the project to emulate a compact drowsiness detection system suitable for different automobiles.


Author(s):  
Renju Rachel Varghese ◽  
Pramod Mathew Jacob ◽  
Joanna Jacob ◽  
Merlin Nissi Babu ◽  
Rupali Ravikanth ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3777 ◽  
Author(s):  
Ataollah Shirzadi ◽  
Karim Soliamani ◽  
Mahmood Habibnejhad ◽  
Ataollah Kavian ◽  
Kamran Chapi ◽  
...  

The main objective of this research was to introduce a novel machine learning algorithm of alternating decision tree (ADTree) based on the multiboost (MB), bagging (BA), rotation forest (RF) and random subspace (RS) ensemble algorithms under two scenarios of different sample sizes and raster resolutions for spatial prediction of shallow landslides around Bijar City, Kurdistan Province, Iran. The evaluation of modeling process was checked by some statistical measures and area under the receiver operating characteristic curve (AUROC). Results show that, for combination of sample sizes of 60%/40% and 70%/30% with a raster resolution of 10 m, the RS model, while, for 80%/20% and 90%/10% with a raster resolution of 20 m, the MB model obtained a high goodness-of-fit and prediction accuracy. The RS-ADTree and MB-ADTree ensemble models outperformed the ADTree model in two scenarios. Overall, MB-ADTree in sample size of 80%/20% with a resolution of 20 m (area under the curve (AUC) = 0.942) and sample size of 60%/40% with a resolution of 10 m (AUC = 0.845) had the highest and lowest prediction accuracy, respectively. The findings confirm that the newly proposed models are very promising alternative tools to assist planners and decision makers in the task of managing landslide prone areas.


Author(s):  
Anthony D. McDonald ◽  
Thomas K. Ferris ◽  
Tyler A. Wiener

Objective The objective of this study was to analyze a set of driver performance and physiological data using advanced machine learning approaches, including feature generation, to determine the best-performing algorithms for detecting driver distraction and predicting the source of distraction. Background Distracted driving is a causal factor in many vehicle crashes, often resulting in injuries and deaths. As mobile devices and in-vehicle information systems become more prevalent, the ability to detect and mitigate driver distraction becomes more important. Method This study trained 21 algorithms to identify when drivers were distracted by secondary cognitive and texting tasks. The algorithms included physiological and driving behavioral input processed with a comprehensive feature generation package, Time Series Feature Extraction based on Scalable Hypothesis tests. Results Results showed that a Random Forest algorithm, trained using only driving behavior measures and excluding driver physiological data, was the highest-performing algorithm for accurately classifying driver distraction. The most important input measures identified were lane offset, speed, and steering, whereas the most important feature types were standard deviation, quantiles, and nonlinear transforms. Conclusion This work suggests that distraction detection algorithms may be improved by considering ensemble machine learning algorithms that are trained with driving behavior measures and nonstandard features. In addition, the study presents several new indicators of distraction derived from speed and steering measures. Application Future development of distraction mitigation systems should focus on driver behavior–based algorithms that use complex feature generation techniques.


2016 ◽  
Vol 15 (1) ◽  
pp. 59-63
Author(s):  
Morgan Stuart

Abstract Sports informatics and computer science in sport are perhaps the most exciting and fast-moving disciplines across all of sports science. The tremendous parallel growth in digital technology, non-invasive sensor devices, computer vision and machine learning have empowered sports analytics in ways perhaps never seen before. This growth provides great challenges for new entrants and seasoned veterans of sports analytics alike. Keeping pace with new technological innovations requires a thorough and systematic understanding of many diverse topics from computer programming, to database design, machine learning algorithms and sensor technology. Nevertheless, as quickly as the state of the art technology changes, the foundation skills and knowledge about computer science in sport are lasting. Furthermore, resources for students and practitioners across this range of areas are scarce, and the new-release textbook Computer Science in Sport: Research and Practice edited by Professor Arnold Baca, provides much of the foundation knowledge required for working in sports informatics. This is certainly a comprehensive text that will be a valuable resource for many readers.


Sign in / Sign up

Export Citation Format

Share Document