scholarly journals A Video-Based DT–SVM School Violence Detecting Algorithm

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2018
Author(s):  
Liang Ye ◽  
Le Wang ◽  
Hany Ferdinando ◽  
Tapio Seppänen ◽  
Esko Alasaarela

School bullying is a serious problem among teenagers. School violence is one type of school bullying and considered to be the most harmful. As AI (Artificial Intelligence) techniques develop, there are now new methods to detect school violence. This paper proposes a video-based school violence detecting algorithm. This algorithm first detects foreground moving targets via the KNN (K-Nearest Neighbor) method and then preprocesses the detected targets via morphological processing methods. Then, this paper proposes a circumscribed rectangular frame integrating method to optimize the circumscribed rectangular frame of moving targets. Rectangular frame features and optical-flow features were extracted to describe the differences between school violence and daily-life activities. We used the Relief-F and Wrapper algorithms to reduce the feature dimension. SVM (Support Vector Machine) was applied as the classifier, and 5-fold cross validation was performed. The accuracy was 89.6%, and the precision was 94.4%. To further improve the recognition performance, we developed a DT–SVM (Decision Tree–SVM) two-layer classifier. We used boxplots to determine some features of the DT layer that are able to distinguish between typical physical violence and daily-life activities and between typical daily-life activities and physical violence. For the remainder of activities, the SVM layer performed a classification. For this DT–SVM classifier, the accuracy reached 97.6%, and the precision reached 97.2%, thus showing a significant improvement.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Liang Ye ◽  
Hany Ferdinando ◽  
Tapio Seppänen ◽  
Esko Alasaarela

School bullying is a serious problem among teenagers, causing depression, dropping out of school, or even suicide. It is thus important to develop antibullying methods. This paper proposes a physical bullying detection method based on activity recognition. The architecture of the physical violence detection system is described, and a Fuzzy Multithreshold classifier is developed to detect physical bullying behaviour, including pushing, hitting, and shaking. Importantly, the application has the capability of distinguishing these types of behaviour from such everyday activities as running, walking, falling, or doing push-ups. To accomplish this, the method uses acceleration and gyro signals. Experimental data were gathered by role playing school bullying scenarios and by doing daily-life activities. The simulations achieved an average classification accuracy of 92%, which is a promising result for smartphone-based detection of physical bullying.


Author(s):  
Liang Ye ◽  
Peng Wang ◽  
Le Wang ◽  
Hany Ferdinando ◽  
Tapio Seppänen ◽  
...  

School bullying is a common social problem, which affects children both mentally and physically, making the prevention of bullying a timeless topic all over the world. This paper proposes a method for detecting bullying in school based on activity recognition and speech emotion recognition. In this method, motion and voice data are gathered by movement sensors and a microphone, followed by extraction of a set of motion and audio features to distinguish bullying incidents from daily life events. Among extracted motion features are both time-domain and frequency-domain features, while audio features are computed with classical MFCCs. Feature selection is implemented using the wrapper approach. At the next stage, these motion and audio features are merged to form combined feature vectors for classification, and LDA is used for further dimension reduction. A BPNN is trained to recognize bullying activities and distinguish them from normal daily life activities. The authors also propose an action transition detection method to reduce computational complexity for practical use. Thus, the bullying detection algorithm will only run, when an action transition event has been detected. Simulation results show that the combined motion-audio feature vector outperforms separate motion features and acoustic features, achieving an accuracy of 82.4% and a precision of 92.2%. Moreover, with the action transition method, the computation cost can be reduced by half.


2020 ◽  
Vol 10 (11) ◽  
pp. 864
Author(s):  
Omneya Attallah ◽  
Jaidaa Abougharbia ◽  
Mohamed Tamazin ◽  
Abdelmonem A. Nasser

Motor deficiencies constitute a significant problem affecting millions of people worldwide. Such people suffer from a debility in daily functioning, which may lead to decreased and incoherence in daily routines and deteriorate their quality of life (QoL). Thus, there is an essential need for assistive systems to help those people achieve their daily actions and enhance their overall QoL. This study proposes a novel brain–computer interface (BCI) system for assisting people with limb motor disabilities in performing their daily life activities by using their brain signals to control assistive devices. The extraction of useful features is vital for an efficient BCI system. Therefore, the proposed system consists of a hybrid feature set that feeds into three machine-learning (ML) classifiers to classify motor Imagery (MI) tasks. This hybrid feature selection (FS) system is practical, real-time, and an efficient BCI with low computation cost. We investigate different combinations of channels to select the combination that has the highest impact on performance. The results indicate that the highest achieved accuracies using a support vector machine (SVM) classifier are 93.46% and 86.0% for the BCI competition III–IVa dataset and the autocalibration and recurrent adaptation dataset, respectively. These datasets are used to test the performance of the proposed BCI. Also, we verify the effectiveness of the proposed BCI by comparing its performance with recent studies. We show that the proposed system is accurate and efficient. Future work can apply the proposed system to individuals with limb motor disabilities to assist them and test their capability to improve their QoL. Moreover, the forthcoming work can examine the system’s performance in controlling assistive devices such as wheelchairs or artificial limbs.


2020 ◽  
Author(s):  
Faisal Hussain ◽  
Muhammad Basit Umair ◽  
Muhammad Ehatisham-ul-Haq ◽  
Ivan Miguel Pires ◽  
Tânia Valente ◽  
...  

Abstract Falling is a commonly occurring mishap with elderly people, which may cause serious injuries. Thus, rapid fall detection is very important in order to mitigate the severe effects of fall among the elderly people. Many fall monitoring systems based on the accelerometer have been proposed for the fall detection. However, many of them mistakenly identify the daily life activities as fall or fall as daily life activity. To this aim, an efficient machine learning-based fall detection algorithm has been proposed in this paper. The proposed algorithm detects fall with efficient sensitivity, specificity, and accuracy as compared to the state-of-the-art techniques. A publicly available dataset with a very simple and computationally efficient set of features is used to accurately detect the fall incident. The proposed algorithm reports and accuracy of 99.98% with the Support Vector Machine(SVM) classifier.


2020 ◽  
Author(s):  
Nalika Ulapane ◽  
Karthick Thiyagarajan ◽  
sarath kodagoda

<div>Classification has become a vital task in modern machine learning and Artificial Intelligence applications, including smart sensing. Numerous machine learning techniques are available to perform classification. Similarly, numerous practices, such as feature selection (i.e., selection of a subset of descriptor variables that optimally describe the output), are available to improve classifier performance. In this paper, we consider the case of a given supervised learning classification task that has to be performed making use of continuous-valued features. It is assumed that an optimal subset of features has already been selected. Therefore, no further feature reduction, or feature addition, is to be carried out. Then, we attempt to improve the classification performance by passing the given feature set through a transformation that produces a new feature set which we have named the “Binary Spectrum”. Via a case study example done on some Pulsed Eddy Current sensor data captured from an infrastructure monitoring task, we demonstrate how the classification accuracy of a Support Vector Machine (SVM) classifier increases through the use of this Binary Spectrum feature, indicating the feature transformation’s potential for broader usage.</div><div><br></div>


2020 ◽  
Vol 20 ◽  
Author(s):  
Hongwei Zhang ◽  
Steven Wang ◽  
Tao Huang

Aims: We would like to identify the biomarkers for chronic hypersensitivity pneumonitis (CHP) and facilitate the precise gene therapy of CHP. Background: Chronic hypersensitivity pneumonitis (CHP) is an interstitial lung disease caused by hypersensitive reactions to inhaled antigens. Clinically, the tasks of differentiating between CHP and other interstitial lungs diseases, especially idiopathic pulmonary fibrosis (IPF), were challenging. Objective: In this study, we analyzed the public available gene expression profile of 82 CHP patients, 103 IPF patients, and 103 control samples to identify the CHP biomarkers. Method: The CHP biomarkers were selected with advanced feature selection methods: Monte Carlo Feature Selection (MCFS) and Incremental Feature Selection (IFS). A Support Vector Machine (SVM) classifier was built. Then, we analyzed these CHP biomarkers through functional enrichment analysis and differential co-expression analysis. Result: There were 674 identified CHP biomarkers. The co-expression network of these biomarkers in CHP included more negative regulations and the network structure of CHP was quite different from the network of IPF and control. Conclusion: The SVM classifier may serve as an important clinical tool to address the challenging task of differentiating between CHP and IPF. Many of the biomarker genes on the differential co-expression network showed great promise in revealing the underlying mechanisms of CHP.


2019 ◽  
Author(s):  
Leona Cilar ◽  
Lucija Gosak ◽  
Amanda Briggs ◽  
Klavdija Čuček Trifkovič ◽  
Tracy McClelland ◽  
...  

BACKGROUND Dementia is a general term for various disorders characterized by memory impairment and loss of at least one cognitive domain. People with dementia are faced with different difficulties in their daily life activities (DLA). With the use of modern technologies, such as mobile phone apps – often called health apps, their difficulties can be alleviated. OBJECTIVE The aim of this paper was to systematically search, analyze and synthetize mobile phone apps designed to support people with mild dementia in daily life activities in two apps bases: Apple App Store and Google Play Store. METHODS A search was conducted in May 2019 following PRISMA recommendations. Results were analyzed and displayed as tables and graphs. Results were synthetized using thematic analysis which was conducted from 14 components, based on human needs for categorized nursing activities. Mobile phone apps were assessed for quality using the System Usability Scale. RESULTS A total of 15 mobile phone apps were identified applying inclusion and exclusion criteria. Five major themes were identified with thematic analysis: multi-component DLA, communication and feelings, recreation, eating and drinking, and movement. Most of the apps (73%) of the apps were not mentioned in scientific literature. CONCLUSIONS There are many mobile phone apps available in mobile phone markets for the support for people with mild dementia; yet only a few of them are focused on challenges in daily life activities. Most of the available apps were not evaluated nor assessed for quality.


Author(s):  
B. Venkatesh ◽  
J. Anuradha

In Microarray Data, it is complicated to achieve more classification accuracy due to the presence of high dimensions, irrelevant and noisy data. And also It had more gene expression data and fewer samples. To increase the classification accuracy and the processing speed of the model, an optimal number of features need to extract, this can be achieved by applying the feature selection method. In this paper, we propose a hybrid ensemble feature selection method. The proposed method has two phases, filter and wrapper phase in filter phase ensemble technique is used for aggregating the feature ranks of the Relief, minimum redundancy Maximum Relevance (mRMR), and Feature Correlation (FC) filter feature selection methods. This paper uses the Fuzzy Gaussian membership function ordering for aggregating the ranks. In wrapper phase, Improved Binary Particle Swarm Optimization (IBPSO) is used for selecting the optimal features, and the RBF Kernel-based Support Vector Machine (SVM) classifier is used as an evaluator. The performance of the proposed model are compared with state of art feature selection methods using five benchmark datasets. For evaluation various performance metrics such as Accuracy, Recall, Precision, and F1-Score are used. Furthermore, the experimental results show that the performance of the proposed method outperforms the other feature selection methods.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 739
Author(s):  
Alessandro Bevilacqua ◽  
Margherita Mottola ◽  
Fabio Ferroni ◽  
Alice Rossi ◽  
Giampaolo Gavelli ◽  
...  

Predicting clinically significant prostate cancer (csPCa) is crucial in PCa management. 3T-magnetic resonance (MR) systems may have a novel role in quantitative imaging and early csPCa prediction, accordingly. In this study, we develop a radiomic model for predicting csPCa based solely on native b2000 diffusion weighted imaging (DWIb2000) and debate the effectiveness of apparent diffusion coefficient (ADC) in the same task. In total, 105 patients were retrospectively enrolled between January–November 2020, with confirmed csPCa or ncsPCa based on biopsy. DWIb2000 and ADC images acquired with a 3T-MRI were analyzed by computing 84 local first-order radiomic features (RFs). Two predictive models were built based on DWIb2000 and ADC, separately. Relevant RFs were selected through LASSO, a support vector machine (SVM) classifier was trained using repeated 3-fold cross validation (CV) and validated on a holdout set. The SVM models rely on a single couple of uncorrelated RFs (ρ < 0.15) selected through Wilcoxon rank-sum test (p ≤ 0.05) with Holm–Bonferroni correction. On the holdout set, while the ADC model yielded AUC = 0.76 (95% CI, 0.63–0.96), the DWIb2000 model reached AUC = 0.84 (95% CI, 0.63–0.90), with specificity = 75%, sensitivity = 90%, and informedness = 0.65. This study establishes the primary role of 3T-DWIb2000 in PCa quantitative analyses, whilst ADC can remain the leading sequence for detection.


Sign in / Sign up

Export Citation Format

Share Document