scholarly journals Effects of Interferometric Radar Altimeter Errors on Marine Gravity Field Inversion

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2465
Author(s):  
Xiaoyun Wan ◽  
Shuanggen Jin ◽  
Bo Liu ◽  
Song Tian ◽  
Weiya Kong ◽  
...  

The traditional altimetry satellite, which is based on pulse-limited radar altimeter, only measures ocean surface heights along tracks; hence, leads to poorer accuracy in the east component of the vertical deflections compared to the north component, which in turn limits the final accuracy of the marine gravity field inversion. Wide-swath altimetry using radar interferometry can measure ocean surface heights in two dimensions and, thus, can be used to compute vertical deflections in an arbitrary direction with the same accuracy. This paper aims to investigate the impact of Interferometric Radar Altimeter (InRA) errors on gravity field inversion. The error propagation between gravity anomalies and InRA measurements is analyzed, and formulas of their relationship are given. By giving a group of possible InRA parameters, numerical simulations are conducted to analyze the accuracy of gravity anomaly inversion. The results show that the accuracy of the gravity anomalies is mainly influenced by the phase errors of InRA; and the errors of gravity anomalies have a linear approximation relationship with the phase errors. The results also show that the east component of the vertical deflections has almost the same accuracy as the north component.

2021 ◽  
Vol 9 ◽  
Author(s):  
Richard Fiifi Annan ◽  
Xiaoyun Wan

A regional gravity field product, comprising vertical deflections and gravity anomalies, of the Gulf of Guinea (15°W to 5°E, 4°S to 4°N) has been developed from sea surface heights (SSH) of five altimetry missions. Though the remove-restore technique was adopted, the deflections of the vertical were computed directly from the SSH without the influence of a global geopotential model. The north-component of vertical deflections was more accurate than the east-component by almost three times. Analysis of results showed each satellite can contribute almost equally in resolving the north-component. This is attributable to the nearly northern inclinations of the various satellites. However, Cryosat-2, Jason-1/GM, and SARAL/AltiKa contributed the most in resolving the east-component. We attribute this to the superior spatial resolution of Cryosat-2, the lower inclination of Jason-1/GM, and the high range accuracy of the Ka-band of SARAL/AltiKa. Weights of 0.687 and 0.313 were, respectively, assigned to the north and east components in order to minimize their non-uniform accuracy effect on the resultant gravity anomaly model. Histogram of computed gravity anomalies compared well with those from renowned models: DTU13, SIOv28, and EGM2008. It averagely deviates from the reference models by −0.33 mGal. Further assessment was done by comparing it with a quadratically adjusted shipborne free-air gravity anomalies. After some data cleaning, observations in shallow waters, as well as some ship tracks were still unreliable. By excluding the observations in shallow waters, the derived gravity field model compares well in ocean depths deeper than 2,000 m.


2020 ◽  
Vol 12 (14) ◽  
pp. 2287
Author(s):  
Xiaoyun Wan ◽  
Richard Fiifi Annan ◽  
Shuanggen Jin ◽  
Xiaoqi Gong

The first Chinese altimetry satellite, Haiyang-2A (HY-2A), which was launched in 2011, has provided a large amount of sea surface heights which can be used to derive marine gravity field. This paper derived the vertical deflections and gravity disturbances using HY-2A observations for the major area of the whole Earth’s ocean from 60°S and 60°N. The results showed that the standard deviations (STD) of vertical deflections differences were 1.1 s and 3.5 s for the north component and the east component between HY-2A’s observations and those from EGM2008 and EIGEN-6C4, respectively. This indicates the accuracy of the east component was poorer than that of the north component. In order to clearly demonstrate contribution of HY-2A’s observations to gravity disturbances, reference models and the commonly used remove-restore method were not adopted in this study. Therefore, the results can be seen as ‘pure’ signals from HY-2A. Assuming the values from EGM2008 were the true values, the accuracy of the gravity disturbances was about −1.1 mGal in terms of mean value of the errors and 8.0 mGal in terms of the STD. This shows systematic errors if only HY-2A observations were used. An index of STD showed that the accuracy of HY-2A was close to the theoretical accuracy according to the vertical deflection products. To verify whether the systematic errors of gravity field were from the long wavelengths, the long-wavelength parts of HY-2A’s gravity disturbance with wavelengths larger than 500 km were replaced by those from EGM2008. By comparing with ‘pure’ HY-2A version of gravity disturbance, the accuracy of the new version products was improved largely. The systematic errors no longer existed and the error STD was reduced to 6.1 mGal.


2021 ◽  
Author(s):  
Luigi Sante Zampa ◽  
Emanuele Lodolo ◽  
Nicola Creati ◽  
Martina Busetti ◽  
Gianni Madrussani ◽  
...  

<p>In this study, we present a comparative analysis between two types of gravity data used in geophysical applications: satellite altimeter-derived gravity and sea-bottom gravity.</p><p>It is largely known that the marine gravity field derived from satellite altimetry in coastal areas is generally biased by signals back-scattered from the nearby land. As a result, the derived gravity anomalies are mostly unreliable for geophysical and geological interpretations of near-shore environments.</p><p>To quantify the errors generated by the land-reflected signals and to verify the goodness of the geologic models inferred from gravity, we compared two different altimetry models with sea-bottom gravity measurements acquired along the Italian coasts from the early 50s to the late 80s.</p><p>We focused on the Gulf of Manfredonia, located in the SE sector of the Adriatic Sea, where: (i) two different sea-bottom gravity surveys have been conducted over the years, (ii) the bathymetry is particularly flat, and (iii) seismic data revealed a prominent carbonate ridge covered by hundreds of meters of Oligocene-Quaternary sediments.</p><p>Gravity field derivatives have been used to enhance both: (i) deep geological contacts, and (ii) coastal noise. The analyses outlined a “ringing-noise effect” which causes the altimeter signal degradation up to 17 km from the coast.</p><p>Differences between the observed gravity and the gravity calculated from a geological model constrained by seismic, showed that all datasets register approximately the same patterns, associated with the Gondola Fault Zone, a major structural discontinuity traversing roughly E-W the investigated area.</p><p>This study highlights the importance of implementing gravity anomalies derived from satellite-altimetry with high-resolution near-shore data, such as the sea-bottom gravity measurements available around the Italian coasts. Such analysis may have significant applications in studying the link between onshore and offshore geological structures in transitional areas.</p>


2020 ◽  
Vol 12 (21) ◽  
pp. 3519
Author(s):  
Weiya Kong ◽  
Bo Liu ◽  
Xiaohong Sui ◽  
Running Zhang ◽  
Jinping Sun

Imaging Radar Altimeter (IRA) is the current development tendency for ocean surface topography (OST) altimetry, which utilizes Synthetic Aperture Radar (SAR) and interferometry to improve the spatial resolution of OST to several kilometers or even better. Meanwhile, centimetric altimetry accuracy should be guaranteed for applications such as geostrophic currents or marine gravity anomaly inversion. However, the baseline length of IRA which determines the altimetric sensitivity is confined by the satellite platform, in consideration of baseline vibration and payload capability. Therefore, the baseline length from a single satellite can extend to only tens of meters, making it difficult to achieve centimetric accuracy. Referring to the successful experience from TerraSAR-X/TanDEM-X, satellite formation can easily extend the baseline length to hundreds or thousands of meters, depending on the helix orbit. Therefore, we propose the large baseline IRA (LB-IRA) from satellite formation for OST altimetry: the carrier frequency shift (CFS) is brought in to compensate for the severe baseline decorrelation, and the helix orbit is carefully selected to prevent severe time decorrelation from along-track baseline. The numerical results indicate that the LB-IRA, whose cross-track baseline ranges between 629~1000 m and along-tack baseline ranges between 0~40 m, can achieve ~1 cm relative accuracy at 1 km resolution.


2021 ◽  
Author(s):  
Xiaoyun Wan ◽  
Bo Liu ◽  
Xiaohong Sui ◽  
Richar Fiifi Annan ◽  
Yijun Min

Abstract As an alternative method, an algorithm for bathymetry inversion using vertical deflections is proposed. Firstly, the formulas for the bathymetry inversion from north and east components of vertical deflections are derived and the data processing is introduced. Then a local area in the South China Sea is selected as an example to experiment the method. The bathymetry inversion based on gravity anomaly was also conducted for a comparison. The results show that the bathymetry derived from the north component of the vertical deflections have almost the same accuracy as that derived from gravity anomalies and the results derived from the east component have the poorest accuracy. The experiment’s results also show that accuracy of the derived bathymetry can be improved if the fitting parameters are adjusted according to the water depths. In summary, among the gravity field products used in this study, although the gravity anomaly yielded the best performance in the bathymetry inversion, the vertical defections can still be used as supplements, especially in areas where accurate vertical deflections exist. This is because deriving gravity anomaly from altimetry observations needs additional data and calculation efforts.


2020 ◽  
Author(s):  
David E Smith ◽  
Maria T Zuber ◽  
Sander J Goossens ◽  
Gregory A Neumann ◽  
Erwan Mazarico

<p>The large anomalies in the lunar gravity field are in most cases the result of large impacts that occurred more than 3 billion years ago.  Today those anomalies provide the stability of the lunar rotation and if removed would cause a change in the position of the intersection of the spin pole with the lithosphere. Thus, extracting a gravity anomaly from today’s gravity field can provide the approximate location of the pole of rotation prior to the impact that caused the anomaly.  By removing the gravity field of each anomaly in order of age, youngest first, we can estimate the path of the lunar pole back 3 to 4 billion years, to the beginning of the time of heavy bombardment.</p><p>Starting from the GRAIL gravity model we selectively remove large gravity anomalies by first determining the center and dimensions of the anomaly from the Bouguer gravity and then deriving the average free air gravity for the Bouguer location and dimensions. The anomaly field is expanded into spherical harmonics and the degree 2 terms used to derive the change in pole position caused by the anomaly. Removing each anomaly in order of increasing age provides an estimate of the pole path from before the time of the first anomaly, SP-A.  Since the pole path depends on the order of the gravity anomalies being created it is important to know when each impact induced anomaly occurred.  The results suggest the re-constructed motion of the lunar pole of rotation is within approximately 10 dgerees of the present pole.</p>


2019 ◽  
Vol 11 (5) ◽  
pp. 537 ◽  
Author(s):  
Markus Hauk ◽  
Roland Pail

Past temporal gravity field solutions from the Gravity Recovery and Climate Experiment (GRACE), as well as current solutions from GRACE Follow-On, suffer from temporal aliasing errors due to undersampling of the signal to be recovered (e.g., hydrology), which arise in terms of stripes caused by the north–south observation direction. In this paper, we investigate the potential of the proposed mass variation observing system by high–low inter-satellite links (MOBILE) mission. We quantify the impact of instrument errors of the main sensors (inter-satellite link and accelerometer) and high-frequency tidal and non-tidal gravity signals on achievable performance of the temporal gravity field retrieval. The multi-directional observation geometry of the MOBILE concept with a strong dominance of the radial component result in a close-to-isotropic error behavior, and the retrieved gravity field solutions show reduced temporal aliasing errors of at least 30% for non-tidal, as well as tidal, mass variation signals compared to a low–low satellite pair configuration. The quality of the MOBILE range observations enables the application of extended alternative processing methods leading to further reduction of temporal aliasing errors. The results demonstrate that such a mission can help to get an improved understanding of different components of the Earth system.


Geophysics ◽  
1991 ◽  
Vol 56 (9) ◽  
pp. 1486-1493 ◽  
Author(s):  
Robin E. Bell ◽  
Bernard J. Coakley ◽  
Robert W. Stemp

In January 1990, a test of the feasibility of airborne gravimetry from a small geophysical survey aircraft, a Cessna 404, was conducted over the Long Island Sound using a Bell Aerospace BGM-3 sea gravity meter. Gravity has been measured from large aircraft and specially modified de Havilland Twin Otters but never from small, standard survey aircraft. The gravity field of the Long Island Sound is dominated by an asymmetric positive 30 mGal anomaly which is well constrained by both marine and land gravity measurements. Using a Trimble 4000 GPS receiver to record the aircraft’s horizontal position and radar altimeter elevations to recover the vertical accelerations, gravity anomalies along a total of 65 km were successfully measured. The root mean square (rms) difference between the airborne results and marine measurements within 2 km of the flight path was 2.6 mGal for 15 measured values. The anomalies recovered from airborne gravimetry can also be compared with the gridded regional free air gravity field calculated using all available marine and land gravity measurements. The rms difference between 458 airborne gravity measurements and the regional gravity field is 2.7 mGal. This preliminary experiment demonstrates that gravity anomalies, with wavelengths as short as 5 km, can be measured from small aircraft with accuracies of 2.7 mGal or better. The gravity measurements could be improved by higher quality vertical and horizontal positioning and tuning the gravimeter’s stabilized platform for aircraft use.


2021 ◽  
Vol 9 ◽  
Author(s):  
Defu Che ◽  
Hang Li ◽  
Shengjun Zhang ◽  
Baodong Ma

The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) satellite uses a synchronized multi-beam photon-counting method to collect data from three pairs of synchronous ground tracks. The sampling rate along the ground tracks is designed to be ∼0.7 m, much smaller than that used in conventional radar altimeters. Hence, it is reasonable to expect an improvement in marine gravity recovery over coastal zones using ICESat-2 data. ICESat-2 provides valid sea surface height (SSH) measurements and a standard data product (ATL12) over ocean areas. This led us to consider the possibility of investigating its ability to calculate the deflection of vertical (DOV) and marine gravity anomalies. We processed ATL12 data about 22 months over the South China Sea (0°–23°N, 103°–120°E) and verified the ability of ICESat-2 SSH measurements to be used in calculating directional components of DOV. The results show that the ICESat-2 SSH data have a similar centimeter-magnitude accuracy level as data from the Jason-2 satellite. Furthermore, the accuracy of cross-track deflection of vertical (CTDOV) calculations between non-identical side beams is lower. For along-track points, the difference in accuracy between the solution of the prime component and the meridional component is significantly reduced, the prime component accuracy is significantly better than the directional components of the gridded deflection of vertical (GDOV), although the enhancement is weak for the meridional component. We also implemented the inversion of the ICESat-2 single mission based on the inverse Vening Meinesz formula, and verified the capability of ICESat-2 gravity field detection using shipborne gravity measurements and XGM2019 gravity field model, and found that the accuracy is 1.35 mGal and 2.47 mGal, respectively. ICESat-2 deserves the attention of the altimetry community, and its advantages are expected to make it an alternative data source for multi-mission fusion inversion of the ocean gravity field in the future.


Author(s):  
Jan Martin Brockmann ◽  
Till Schubert ◽  
Wolf-Dieter Schuh

AbstractAfter it was found that the gravity gradients observed by the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite could be significantly improved by an advanced calibration, a reprocessing project for the entire mission data set was initiated by ESA and performed by the GOCE High-level processing facility (GOCE HPF). One part of the activity was delivering the gravity field solutions, where the improved level 1b and level 2 data serve as an input for global gravity field recovery. One well-established approach for the analysis of GOCE observations is the so-called time-wise approach. Basic characteristics of the GOCE time-wise solutions is that only GOCE observations are included to remain independent of any other gravity field observables and that emphasis is put on the stochastic modeling of the observations’ uncertainties. As a consequence, the time-wise solutions provide a GOCE-only model and a realistic uncertainty description of the model in terms of the full covariance matrix of the model coefficients. Within this contribution, we review the GOCE time-wise approach and discuss the impact of the improved data and modeling applied in the computation of the new GO_CONS_EGM_TIM_RL06 solution. The model reflects the Earth’s static gravity field as observed by the GOCE satellite during its operation. As nearly all global gravity field models, it is represented as a spherical harmonic expansion, with maximum degree 300. The characteristics of the model and the contributing data are presented, and the internal consistency is demonstrated. The updated solution nicely meets the official GOCE mission requirements with a global mean accuracy of about 2 cm in terms of geoid height and 0.6 mGal in terms of gravity anomalies at ESA’s target spatial resolution of 100 km. Compared to its RL05 predecessor, three kinds of improvements are shown, i.e., (1) the mean global accuracy increases by 10–25%, (2) a more realistic uncertainty description and (3) a local reduction of systematic errors in the order of centimeters.


Sign in / Sign up

Export Citation Format

Share Document