scholarly journals A Wireless Angle and Position Tracking Concept for Live Data Control of Advanced, Semi-Automated Manufacturing Processes

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2589
Author(s):  
Melanie Lipka ◽  
David Meinel ◽  
Stefan Müller ◽  
Erik Sippel ◽  
Jörg Franke ◽  
...  

Despite recent industrial automation advances, small series production still requires a considerable amount of manual work, and training, and monitoring of workers is consuming a significant amount of time and manpower. Adopting live monitoring of the stages in manual production, along with the comprehensive representation of production steps, may help resolve this problem. For ergonomic live support, the overall system presented in this paper combines localization, torque control, and a rotation counter in a novel approach to monitor of semi-automated manufacturing processes. A major challenge in this context is tracking, especially hand-guided tools, without the disruptions and restrictions necessary with rigid position encoders. In this paper, a promising measurement concept involving wireless wave-based sensors for close-range position tracking in industrial surroundings is proposed. By using simple beacons, the major share of processing is transferred to fixed nodes, allowing for reduced hardware size and power consumption for the wireless mobile units. This requires designated localization approaches relying on only relative phase information, similar to the proposed Kalman-filter-based-beam-tracking approach. Measurement results show a beam-tracking accuracy of about 0.58 ∘ in azimuth and 0.89 ∘ in elevation, resulting in an overall tracking accuracy of about 3.18 cm.

2021 ◽  
Author(s):  
SARTHAK MAHAPATRA SARTHAK MAHAPATRA ◽  
JONATHAN BELNOUE ◽  
JAMES KRATZ ◽  
DMITRY S. IVANOV ◽  
STEPHEN R. HALLETT

One of the most widely used automated manufacturing processes for composite parts is automated fibre placement (AFP). The deposition process involves the simultaneous warming, lay-up and consolidation of prepreg consisting of multitude of process parameters. Currently, AFP process parameters that ensure part conformance are derived by expensive and time-consuming trial-and-error approaches. The aim of this study is to demonstrate how physics-based finite element simulations that can predict the as manufactured geometry of a preform deposited by AFP can help reduce some of the empiricism associated with current industry practices. Here we particularly focus on the consolidation behaviour of toughened prepregs during the deposition process. An isothermal roller compaction model with thermal properties derived from an independent simplified thermo-mechanical model of the AFP head is used. Additionally, a fully characterised viscoelastic material definition is used for the prepreg tape along with a hyperelastic material for the compaction roller to accurately represent the physical parts. Various lay-up speeds, heater powers and compaction forces are simulated. To reduce the empiricism present in the manufacturing process, the viability of incorporating the numerical models into existing statistical relationships between process parameters and manufactured geometry is examined.


2018 ◽  
Vol 10 (1) ◽  
pp. 168781401775196 ◽  
Author(s):  
Ping Wang ◽  
Yabo Wang ◽  
He Huang ◽  
Feng Ru ◽  
Quan Pan

In order to improve the neurological recovery of hand neurorehabilitation, target-oriented, intensive, repetitive activities of daily living are used, such as training with recognition of hand gestures during robot-aided exercise. In this article, a cascade control algorithm integrating electromyography bio-feedback into hand gesture recognition is proposed. The outer loop is the trajectory motion tracking with Kinect-based gesture decoding classifier, and the inner loop is torque control with electromyography bio-feedback in the real time. This proposed method improves the tracking accuracy. The tracking error is effectively reduced from 70.56 to 28.07 in the simulation experiment. The initial test proves that the proposed method with additional torque control allows active assistance on the human–machine interface of other rehabilitation robots in future.


Author(s):  
Zheng (Jeremy) Li

The prototyping and implementation of robotic system is a scientific and technological integrating of robotic system design, development, testing, and application. This chapter describes the recent development and applications of robotic systems to surgery procedures in biomedical engineering and automated manufacturing processes in industry. It includes the design and development, computer-aided modeling and simulation, prototype analysis, and testing of robotic systems in these two different applications.


Author(s):  
I V Kovalev ◽  
P A Kusnetsov ◽  
V V Losev ◽  
M V Saramud ◽  
A A Voroshilova ◽  
...  

Robotica ◽  
1998 ◽  
Vol 16 (3) ◽  
pp. 297-307 ◽  
Author(s):  
Jun Miura ◽  
Katsushi Ikeuchi

The ability of manipulating flexible objects, such as rubber belts and paper sheets, is important in automated manufacturing systems. This paper describes a novel approach to vision-guided assembly of flexible objects. The operation dealt with in this paper is to assemble a rubber belt with fixed pulleys. By analyzing possible states of the belt based on the empirical knowledge of the belt, we can derive a method to have not only the action planning but also the visual verification planning. We have implemented a belt assembly system using the two manipulators and a laser range finder as the sensor, and succeeded in performing the belt-pulley assembly. The extension of our approach to other kinds of assembly of flexible objects is also discussed.


2019 ◽  
Vol 25 ◽  
pp. 79-82
Author(s):  
Vladimír Vinarský ◽  
Fabiana Martino ◽  
Giancarlo Forte ◽  
Jan Šleichrt ◽  
Václav Rada ◽  
...  

To investigate cellular response of cardiomyocytes to substrate mechanics, biocompatible material with stiffness in physiological range is needed. PDMS based material is used for construction of microfluidic organ on chip devices for cell culture due to ease of device preparation, bonding, and possibility of surface functionalization. However it has stiffness orders of magnitude out of physiological range. Therefore, we adapted recently available protocol aiming to prepare substrates which offer stiffness in physiological range 5−100kPa using various mixtures of Sylgard. An in-house developed loading device with single micron position tracking accuracy and sub-micron position sensitivity was adapted for this experimental campaign. All batches of the samples were subjected to uniaxial loading. During quasi-static experiment the samples were compressed to minimally 40% deformation. The results are represented in the form of stress-strain curves calculated from the acquired force and displacement data and elastic moduli are estimated.


Sign in / Sign up

Export Citation Format

Share Document