scholarly journals Monitoring with In Vivo Electrochemical Sensors: Navigating the Complexities of Blood and Tissue Reactivity

Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3149 ◽  
Author(s):  
Pankaj Vadgama

The disruptive action of an acute or critical illness is frequently manifest through rapid biochemical changes that may require continuous monitoring. Within these changes, resides trend information of predictive value, including responsiveness to therapy. In contrast to physical variables, biochemical parameters monitored on a continuous basis are a largely untapped resource because of the lack of clinically usable monitoring systems. This is despite the huge testing repertoire opening up in recent years in relation to discrete biochemical measurements. Electrochemical sensors offer one of the few routes to obtaining continuous readout and, moreover, as implantable devices information referable to specific tissue locations. This review focuses on new biological insights that have been secured through in vivo electrochemical sensors. In addition, the challenges of operating in a reactive, biological, sample matrix are highlighted. Specific attention is given to the choreographed host rejection response, as evidenced in blood and tissue, and how this limits both sensor life time and reliability of operation. Examples will be based around ion, O2, glucose, and lactate sensors, because of the fundamental importance of this group to acute health care.

2018 ◽  
Vol 33 (6) ◽  
pp. 819-833 ◽  
Author(s):  
Wenlan Qiao ◽  
Lu Lu ◽  
Guangxue Wu ◽  
Xianglian An ◽  
Dong Li ◽  
...  

Since synthetic nerve conduits do not exhibit ideal regeneration characteristics, they are generally inadequate substitutes for autologous nerve grafts in the repair of long peripheral nerve defects. To resolve this problem, in this study, a nerve regeneration acellular nerve graft (ANG) with homologous dental pulp stem cells (DPSCs) was constructed. Xenogeneic ANG was processed by Myroilysin to completely remove cells and myelin sheath, while preserving extracellular matrix (ECM) microstructure of the natural nerve. The study revealed that ANG could support cell attachment and proliferation and did not stimulate a vigorous host rejection response. After inoculation of rabbit DPSCs (r-DPSCs) onto ANG, cells were observed to align along the longitudinal axis of the acellular nerve matrix (ANM) and persistently express NGF and BDNF. Undifferentiated r-DPSCs also presented glial cell characteristics and promoted nerve regeneration after transplantation in vivo. We repaired 1 cm purebred New Zealand White Rabbits sciatic nerve defects using this nerve graft construction, and nerve gap regeneration was indicated by electrophysiological and histological analysis. Therefore, we conclude that the combination of an ANG processed by Myroilysin with DPSCs providing a microenvironment that increases nerve regeneration for repairing peripheral nerve defects.


1996 ◽  
Vol 76 (04) ◽  
pp. 549-555 ◽  
Author(s):  
Walter A Wuillemin ◽  
C Erik Hack ◽  
Wim K Bleeker ◽  
Bart J Biemond ◽  
Marcel Levi ◽  
...  

SummaryC1-inhibitor (C1Inh), antithrombin III (ATIII), α1-antitrypsin (a1AT), and α2-antiplasmin (a2AP) are known inhibitors of factor XIa (FXIa). However, their precise contribution to FXIa inactivation in vivo is not known. We investigated FXIa inactivation in chimpanzees and assessed the contribution of these inhibitors to FXIa inactivation in patients with presumed FXI activation.Chimpanzees were infused with FXIa and the various FXIa-FXIa inhibitor complexes formed were measured. Most of FXIa was complexed to C1Inh (68%), followed by a2AP (13%), a1AT (10%), and ATIII (9%). Analysis of the plasma elimination kinetics revealed a half-life time of clearance (t1/2) for the FXIa-FXIa inhibitor complexes of 95 to 104 min, except for FXIa-a1AT, which had a t1/2 of 349 min. Due to this long t1/2, FXIa-a1AT complexes were predicted to show the highest levels in plasma samples from patients with activation of FXI. This was indeed shown in patients with disseminated intravascular coagulation, recent myocardial infarction or unstable angina pectoris. We conclude from this study that in vivo C1Inh is the predominant inhibitor of FXIa, but that FXIa-a1 AT complexes due to their relatively long t1/2 may be the best parameter to assess FXI activation in clinical samples.


1997 ◽  
Vol 273 (6) ◽  
pp. E1216-E1227 ◽  
Author(s):  
P. C. M. Van Zijl ◽  
D. Davis ◽  
S. M. Eleff ◽  
C. T. W. Moonen ◽  
R. J. Parker ◽  
...  

A new in vivo nuclear magnetic resonance (NMR) spectroscopy method is introduced that dynamically measures cerebral utilization of magnetically labeled [1-13C]glucose from the change in total brain glucose signals on infusion. Kinetic equations are derived using a four-compartment model incorporating glucose transport and phosphorylation. Brain extract data show that the glucose 6-phosphate concentration is negligible relative to glucose, simplifying the kinetics to three compartments and allowing direct determination of the glucose-utilization half-life time [ t ½ = ln2/( k 2 + k 3)] from the time dependence of the NMR signal. Results on isofluorane ( n = 5)- and halothane ( n = 7)- anesthetized cats give a hyperglycemic t ½ = 5.10 ± 0.11 min−1 (SE). Using Michaelis-Menten kinetics and an assumed half-saturation constant Kt = 5 ± 1 mM, we determined a maximal transport rate T max = 0.83 ± 0.19 μmol ⋅ g−1 ⋅ min−1, a cerebral metabolic rate of glucose CMRGlc = 0.22 ± 0.03 μmol ⋅ g−1 ⋅ min−1, and a normoglycemic cerebral influx rate CIRGlc = 0.37 ± 0.05 μmol ⋅ g−1 ⋅ min−1. Possible extension of this approach to positron emission tomography and proton NMR is discussed.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2081 ◽  
Author(s):  
Teddy Tite ◽  
Adrian-Claudiu Popa ◽  
Liliana Balescu ◽  
Iuliana Bogdan ◽  
Iuliana Pasuk ◽  
...  

High-performance bioceramics are required for preventing failure and prolonging the life-time of bone grafting scaffolds and osseous implants. The proper identification and development of materials with extended functionalities addressing socio-economic needs and health problems constitute important and critical steps at the heart of clinical research. Recent findings in the realm of ion-substituted hydroxyapatite (HA) could pave the road towards significant developments in biomedicine, with an emphasis on a new generation of orthopaedic and dentistry applications, since such bioceramics are able to mimic the structural, compositional and mechanical properties of the bone mineral phase. In fact, the fascinating ability of the HA crystalline lattice to allow for the substitution of calcium ions with a plethora of cationic species has been widely explored in the recent period, with consequent modifications of its physical and chemical features, as well as its functional mechanical and in vitro and in vivo biological performance. A comprehensive inventory of the progresses achieved so far is both opportune and of paramount importance, in order to not only gather and summarize information, but to also allow fellow researchers to compare with ease and filter the best solutions for the cation substitution of HA-based materials and enable the development of multi-functional biomedical designs. The review surveys preparation and synthesis methods, pinpoints all the explored cation dopants, and discloses the full application range of substituted HA. Special attention is dedicated to the antimicrobial efficiency spectrum and cytotoxic trade-off concentration values for various cell lines, highlighting new prophylactic routes for the prevention of implant failure. Importantly, the current in vitro biological tests (widely employed to unveil the biological performance of HA-based materials), and their ability to mimic the in vivo biological interactions, are also critically assessed. Future perspectives are discussed, and a series of recommendations are underlined.


mSystems ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Vaughn S. Cooper ◽  
Erin Honsa ◽  
Hannah Rowe ◽  
Christopher Deitrick ◽  
Amy R. Iverson ◽  
...  

ABSTRACT Experimental evolution is a powerful technique to understand how populations evolve from selective pressures imparted by the surrounding environment. With the advancement of whole-population genomic sequencing, it is possible to identify and track multiple contending genotypes associated with adaptations to specific selective pressures. This approach has been used repeatedly with model species in vitro, but only rarely in vivo. Herein we report results of replicate experimentally evolved populations of Streptococcus pneumoniae propagated by repeated murine nasal colonization with the aim of identifying gene products under strong selection as well as the population genetic dynamics of infection cycles. Frameshift mutations in one gene, dltB, responsible for incorporation of d-alanine into teichoic acids on the bacterial surface, evolved repeatedly and swept to high frequency. Targeted deletions of dltB produced a fitness advantage during initial nasal colonization coupled with a corresponding fitness disadvantage in the lungs during pulmonary infection. The underlying mechanism behind the fitness trade-off between these two niches was found to be enhanced adherence to respiratory cells balanced by increased sensitivity to host-derived antimicrobial peptides, a finding recapitulated in the murine model. Additional mutations that are predicted to affect trace metal transport, central metabolism, and regulation of biofilm production and competence were also selected. These data indicate that experimental evolution can be applied to murine models of pathogenesis to gain insight into organism-specific tissue tropisms. IMPORTANCE Evolution is a powerful force that can be experimentally harnessed to gain insight into how populations evolve in response to selective pressures. Herein we tested the applicability of experimental evolutionary approaches to gain insight into how the major human pathogen Streptococcus pneumoniae responds to repeated colonization events using a murine model. These studies revealed the population dynamics of repeated colonization events and demonstrated that in vivo experimental evolution resulted in highly reproducible trajectories that reflect the environmental niche encountered during nasal colonization. Mutations impacting the surface charge of the bacteria were repeatedly selected during colonization and provided a fitness benefit in this niche that was counterbalanced by a corresponding fitness defect during lung infection. These data indicate that experimental evolution can be applied to models of pathogenesis to gain insight into organism-specific tissue tropisms.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Fabio Sallustio ◽  
Claudia Curci ◽  
Alessandra Stasi ◽  
Giuseppe De Palma ◽  
Chiara Divella ◽  
...  

Toll-like receptors (TLRs) represent one of the bridges that regulate the cross-talk between the innate and adaptive immune systems. TLRs interact with molecules shared and preserved by the pathogens of origin but also with endogenous molecules (damage/danger-associated molecular patterns (DAMPs)) that derive from injured tissues. This is probably why TLRs have been found to be expressed on several kinds of stem/progenitor cells (SCs). In these cells, the role of TLRs in the regulation of the basal motility, proliferation, differentiation processes, self-renewal, and immunomodulation has been demonstrated. In this review, we analyze the many different functions that the TLRs assume in SCs, pointing out that they can have different effects, depending on the background and on the kind of ligands that they recognize. Moreover, we discuss the TLR involvement in the response of SC to specific tissue damage and in the reparative processes, as well as how the identification of molecules mediating the differential function of TLR signaling could be decisive for the development of new therapeutic strategies. Considering the available studies on TLRs in SCs, here we address the importance of TLRs in sensing an injury by stem/progenitor cells and in determining their behavior and reparative activity, which is dependent on the conditions. Therefore, it could be conceivable that SCs employed in therapy could be potentially exposed to TLR ligands, which might modulate their therapeutic potential in vivo. In this context, to modulate SC proliferation, survival, migration, and differentiation in the pathological environment, we need to better understand the mechanisms of action of TLRs on SCs and learn how to control these receptors and their downstream pathways in a precise way. In this manner, in the future, cell therapy could be improved and made safer.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2577 ◽  
Author(s):  
Yuanying Liang ◽  
Ting Guo ◽  
Lei Zhou ◽  
Andreas Offenhäusser ◽  
Dirk Mayer

The detection of chemical messenger molecules, such as neurotransmitters in nervous systems, demands high sensitivity to measure small variations, selectivity to eliminate interferences from analogues, and compliant devices to be minimally invasive to soft tissue. Here, an organic electrochemical transistor (OECT) embedded in a flexible polyimide substrate is utilized as transducer to realize a highly sensitive dopamine aptasensor. A split aptamer is tethered to a gold gate electrode and the analyte binding can be detected optionally either via an amperometric or a potentiometric transducer principle. The amperometric sensor can detect dopamine with a limit of detection of 1 μM, while the novel flexible OECT-based biosensor exhibits an ultralow detection limit down to the concentration of 0.5 fM, which is lower than all previously reported electrochemical sensors for dopamine detection. The low detection limit can be attributed to the intrinsic amplification properties of OECTs. Furthermore, a significant response to dopamine inputs among interfering analogues hallmarks the selective detection capabilities of this sensor. The high sensitivity and selectivity, as well as the flexible properties of the OECT-based aptasensor, are promising features for their integration in neuronal probes for the in vitro or in vivo detection of neurochemical signals.


ACS Sensors ◽  
2019 ◽  
Vol 4 (12) ◽  
pp. 3102-3118 ◽  
Author(s):  
Cong Xu ◽  
Fei Wu ◽  
Ping Yu ◽  
Lanqun Mao

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 741-741
Author(s):  
Wenchun Chen ◽  
Kayleigh M Voos ◽  
Cassandra D Josephson ◽  
Renhao Li

Abstract Background: Refrigerated platelets are rapidly cleared upon transfusion. The mechanism of this fast clearance is not fully understood. It was recently reported that refrigeration-induced binding of von Willebrand factor (VWF) to platelets contributed to the rapid clearance of platelet after transfusion. Adding a peptide that blocks the binding of VWF to platelet GPIbα during refrigeration can improve the post-transfusion recovery and survival of refrigerated murine platelets in vivo. However, since the interaction of VWF with GPIbα is required for primary hemostasis, adding a long-acting inhibitory peptide to stored platelets may impede the hemostatic function of these platelets after transfusion. DNA aptamer ARC1779 binds VWF and inhibits its binding to GPIbα. It has previously been developed as an anti-thrombotic agent. Its half-life is relatively fast, at a reported 2 hours in human. Objective: We aimed to test whether ARC1779 can improve the post-transfusion recovery and survival of refrigerated platelets, and, due to its fast clearance rate, without significantly impeding the hemostatic functions of these platelets in vivo. Methods: Human or murine platelets were stored at 4°C with or without ARC1779 for 48 hours. VWF binding was measured by flow cytometry. After refrigeration, human platelets were retro-orbitally transfused into NOD-SCID mice, while murine platelets into wild-type mice. Post-transfusion, periodic blood draw was performed, and the percentage of infused platelets in the total platelet population was measured by flow cytometry to calculate the recovery and survival over time. To monitor the hemostatic function, refrigerated murine platelets were transfused into transgenic IL4R-IbαTg mice, and a tail bleeding time assay was performed at four hours after transfusion. IL4R-IbαTg platelets lack the extracellular domain of GPIbα and cannot bind VWF and other GPIbα ligands. As a result, hemostasis in IL4R-IbαTg mice is severely impaired. Results and conclusion: Treatment of ARC1779 during 48-hour refrigeration efficiently inhibited VWF binding to platelets. ARC1779-treated refrigerated murine platelets exhibit increased post-transfusion recovery and survival rates compared to untreated refrigerated ones. (Recovery of ARC1779-treated platelets: 76.7±5.5%; Untreated: 63.7±0.8%, N=6, p<0.01. Half-life time of ARC1779-treated platelets: 31.4±2.36 hr; Untreated: 28.1±0.86 hr, N=6, p<0.05). A similar increase was also observed for refrigerated human platelets (Recovery: 49.4±4.4% vs. 36.8±2.1%, N=6, p<0.01; Half-life time: 9.2±1.5 hr vs. 8.7±0.9 hr, N=6, n.s.). Additionally, the tail bleeding time in ARC1779-treated group was significantly shorter than no ARC1779-treated group (160±65 vs. 373±96 seconds, N=7, p<0.01). For comparison, un-transfused IL4R-IbαTg mice have a tail bleeding time longer than 1200 s, and those transfused with freshly prepared platelets 155±80 s. Overall, these results demonstrate that inhibiting the GPIbα-VWF interaction by ARC1779 during cold storage of platelets improves platelet post-transfusion recovery. The treatment also helps to preserve the hemostatic function of refrigerated platelets. These results suggest that an inhibitor of the GPIbα-VWF interaction but with a limited half-life may be a potential therapeutic option to enable or improve the refrigeration of platelets for transfusion treatment. Disclosures Li: Neoletix: Consultancy, Equity Ownership.


2020 ◽  
Author(s):  
Vaughn S. Cooper ◽  
Erin Honsa ◽  
Hannah Rowe ◽  
Christopher Deitrick ◽  
Amy R. Iverson ◽  
...  

AbstractExperimental evolution is a powerful technique to understand how populations evolve from selective pressures imparted by the surrounding environment. With the advancement of whole-population genomic sequencing it is possible to identify and track multiple contending genotypes associated with adaptations to specific selective pressures. This approach has been used repeatedly with model species in vitro, but only rarely in vivo. Herein we report results of replicate experimentally evolved populations of Streptococcus pneumoniae propagated by repeated murine nasal colonization with the aim of identifying gene products under strong selection as well as the population-genetic dynamics of infection cycles. Frameshift mutations in one gene, dltB, responsible for incorporation of D-alanine into teichoic acids on the bacterial surface, evolved repeatedly and swept to high frequency. Targeted deletions of dltB produced a fitness advantage during initial nasal colonization coupled with a corresponding fitness disadvantage in the lungs during pulmonary infection. The underlying mechanism behind the fitness tradeoff between these two niches was found to be enhanced adherence to respiratory cells balanced by increased sensitivity to host-derived antimicrobial peptides, a finding recapitulated in the murine model. Additional mutations were also selected that are predicted to affect trace metal transport, central metabolism and regulation of biofilm production and competence. These data indicate that experimental evolution can be applied to murine models of pathogenesis to gain insight into organism-specific tissue tropisms.ImportanceEvolution is a powerful force that can be experimentally harnessed to gain insight into how populations evolve in response to selective pressures. Herein we tested the applicability of experimental evolutionary approaches to gain insight into how the major human pathogen Streptococcus pneumoniae responds to repeated colonization events using a murine model. These studies revealed the population dynamics of repeated colonization events and demonstrated that in vivo experimental evolution resulted in highly reproducible trajectories that reflect the environmental niche encountered during nasal colonization. Mutations impacting the surface charge of the bacteria were repeatedly selected during colonization and provided a fitness benefit in this niche that was counterbalanced by a corresponding fitness defect during lung infection. These data indicate that experimental evolution can be applied to models of pathogenesis to gain insight into organism-specific tissue tropisms.


Sign in / Sign up

Export Citation Format

Share Document