scholarly journals Performance updating of concrete bridges using proactive health monitoring methods

2004 ◽  
Vol 86 (3) ◽  
pp. 247-256 ◽  
Author(s):  
M.Imran Rafiq ◽  
Marios K. Chryssanthopoulos ◽  
Toula Onoufriou
2021 ◽  
pp. 136943322110384
Author(s):  
Xingyu Fan ◽  
Jun Li ◽  
Hong Hao

Vibration based structural health monitoring methods are usually dependent on the first several orders of modal information, such as natural frequencies, mode shapes and the related derived features. These information are usually in a low frequency range. These global vibration characteristics may not be sufficiently sensitive to minor structural damage. The alternative non-destructive testing method using piezoelectric transducers, called as electromechanical impedance (EMI) technique, has been developed for more than two decades. Numerous studies on the EMI based structural health monitoring have been carried out based on representing impedance signatures in frequency domain by statistical indicators, which can be used for damage detection. On the other hand, damage quantification and localization remain a great challenge for EMI based methods. Physics-based EMI methods have been developed for quantifying the structural damage, by using the impedance responses and an accurate numerical model. This article provides a comprehensive review of the exciting researches and sorts out these approaches into two categories: data-driven based and physics-based EMI techniques. The merits and limitations of these methods are discussed. In addition, practical issues and research gaps for EMI based structural health monitoring methods are summarized.


2021 ◽  
Vol 11 (17) ◽  
pp. 8060
Author(s):  
Saeid Darban ◽  
Hosein Ghasemzadeh Tehrani ◽  
Nader Karballaeezadeh ◽  
Amir Mosavi

This paper proposes a method for monitoring the structural health of concrete bridges in Iran. In this method, the bridge condition index (BCI) of bridges is determined by the analytical hierarchy process (AHP). BCI constitutes eight indices that are scored based on the experts’ views, including structural, hydrology and climate, safety, load impact, geotechnical and seismicity, strategic importance, facilities, and traffic and pavement. Experts’ views were analyzed by Expert Choice software, and the relative importance (weight) of all eight indices were determined using AHP. Moreover, the scores of indices for various conditions were extracted from experts’ standpoints. BCI defines as the sum of weighted scores of indices. Bridge inspectors can examine the bridge, determine the scores of indices, and compute BCI. Higher values of BCI indicate better conditions. Therefore, bridges with lower BCI take priority in maintenance activities. As the case studies, the authors selected five bridges in Iran. Successful implementation of the proposed method for these case studies verified that this method can be applied as an easy-to-use optimization tool in health monitoring and prioritizing programs.


2020 ◽  
Vol 10 (18) ◽  
pp. 6360
Author(s):  
Jaime Campos ◽  
Pankaj Sharma ◽  
Michele Albano ◽  
Luis Lino Ferreira ◽  
Martin Larrañaga

This paper discusses the integration of emergent ICTs, such as the Internet of Things (IoT), the Arrowhead Framework, and the best practices from the area of condition monitoring and maintenance. These technologies are applied, for instance, for roller element bearing fault diagnostics and analysis by simulating faults. The authors first undertook the leading industry standards for condition-based maintenance (CBM), i.e., open system architecture–condition-based maintenance (OSA–CBM) and Machinery Information Management Open System Alliance (MIMOSA), which has been working towards standardizing the integration and interchangeability between systems. In addition, this paper highlights the predictive health monitoring methods that are needed for an effective CBM approach. The monitoring of industrial machines is discussed as well as the necessary details are provided regarding a demonstrator built on a metal sheet bending machine of the Greenbender family. Lastly, the authors discuss the benefits of the integration of the developed prototypes into a service-oriented platform, namely the Arrowhead Framework, which can be instrumental for the remotization of maintenance activities, such as the analysis of various equipment that are geographically distributed, to push forward the grand vision of the servitization of predictive health monitoring methods for large-scale interoperability.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3460 ◽  
Author(s):  
Hoofar Shokravi ◽  
Hooman Shokravi ◽  
Norhisham Bakhary ◽  
Mahshid Heidarrezaei ◽  
Seyed Saeid Rahimian Koloor ◽  
...  

Bridges are designed to withstand different types of loads, including dead, live, environmental, and occasional loads during their service period. Moving vehicles are the main source of the applied live load on bridges. The applied load to highway bridges depends on several traffic parameters such as weight of vehicles, axle load, configuration of axles, position of vehicles on the bridge, number of vehicles, direction, and vehicle’s speed. The estimation of traffic loadings on bridges are generally notional and, consequently, can be excessively conservative. Hence, accurate prediction of the in-service performance of a bridge structure is very desirable and great savings can be achieved through the accurate assessment of the applied traffic load in existing bridges. In this paper, a review is conducted on conventional vehicle-based health monitoring methods used for bridges. Vision-based, weigh in motion (WIM), bridge weigh in motion (BWIM), drive-by and vehicle bridge interaction (VBI)-based models are the methods that are generally used in the structural health monitoring (SHM) of bridges. The performance of vehicle-assisted methods is studied and suggestions for future work in this area are addressed, including alleviating the downsides of each approach to disentangle the complexities, and adopting intelligent and autonomous vehicle-assisted methods for health monitoring of bridges.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 826 ◽  
Author(s):  
Christoph Kralovec ◽  
Martin Schagerl

Structural health monitoring (SHM) is the continuous on-board monitoring of a structure’s condition during operation by integrated systems of sensors. SHM is believed to have the potential to increase the safety of the structure while reducing its deadweight and downtime. Numerous SHM methods exist that allow the observation and assessment of different damages of different kinds of structures. Recently data fusion on different levels has been getting attention for joint damage evaluation by different SHM methods to achieve increased assessment accuracy and reliability. However, little attention is given to the question of which SHM methods are promising to combine. The current article addresses this issue by demonstrating the theoretical capabilities of a number of prominent SHM methods by comparing their fundamental physical models to the actual effects of damage on metal and composite structures. Furthermore, an overview of the state-of-the-art damage assessment concepts for different levels of SHM is given. As a result, dynamic SHM methods using ultrasonic waves and vibrations appear to be very powerful but suffer from their sensitivity to environmental influences. Combining such dynamic methods with static strain-based or conductivity-based methods and with additional sensors for environmental entities might yield a robust multi-sensor SHM approach. For demonstration, a potent system of sensors is defined and a possible joint data evaluation scheme for a multi-sensor SHM approach is presented.


Author(s):  
Salvatore Salamone ◽  
Ivan Bartoli ◽  
Robert Phillips ◽  
Claudio Nucera ◽  
Francesco Lanza di Scalea

Sign in / Sign up

Export Citation Format

Share Document