scholarly journals Effects of Artificial Texture Insoles and Foot Arches on Improving Arch Collapse in Flat Feet

Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3667 ◽  
Author(s):  
Yao-Te Wang ◽  
Jong-Chen Chen ◽  
Ying-Sheng Lin

The arches of the foot play a vital role in cushioning the impact and pressure generated from ground reaction forces due to body weight. Owing to a lack of normal human arch structure, people diagnosed as having flat feet often have discomfort in the soles of their feet. The results may not only cause inappropriate foot pressure distribution on the sole but also further cause foot injuries. This study heavily relies on a homemade foot pressure sensing device equipped with textured insoles of different heights and artificial arches. This was to explore the extent to which the pressure distribution of the foot in people with flat feet could be improved. A further comparison was made of the effects of using the textured insoles with different heights on two different groups of people diagnosed with flat and normal feet respectively. Sixty-five undergraduate and postgraduate volunteers were invited to receive the ink footprint test for measuring their degrees of arch index. Nine of these 65 had 2 flat feet, 3 had a left flat foot, 5 had a right flat foot, and 48 had 2 normal feet. To ensure the same number of subjects in both the control and the experimental groups, 9 of the 48 subjects who had normal feet were randomly selected. In total, 26 subjects (Male: 25, Female: 1; Age: 22 ± 1 years; height: 173.6 ± 2.5 cm; body mass: 68.3 ± 5.4 kg; BMI: 22.6 ± 1.2) were invited to participate in this foot pressure sensing insoles study. The experimental results showed that the use of textured insoles designed with different heights could not effectively improve the plantar pressure distribution and body stability in subjects with flat feet. Conversely, the use of an artificial arch effectively improved the excessive peak in pressure and poor body stability, and alleviated the problem of plantar collapse for patients with flat feet, especially in the inner part of their hallux and forefoot.

2021 ◽  
pp. 91-91
Author(s):  
Sonja Susnjevic ◽  
Dragana Milijasevic ◽  
Dusica Maric ◽  
Olja Niciforovic-Surkovic ◽  
Vesna Mijatovic-Jovanovic ◽  
...  

Introduction/Objective. The aim of this study was to examine the association between flat feet and socio-demographic factors and nutritional status in children aged 7-14 years of the Province of Vojvodina, Serbia. Methods. The research was conducted as a cross-sectional study. The survey instrument was a questionnaire, and anthropometric measurements were done using standardized procedures. To determine the impact of socio-demographic factors and nutritional status as independent variables on the flat feet in schoolchildren as a dependent variable, a multivariate logistic regression model was implemented. A multivariate model was adjusted for age, gender, type of settlement, and material status. Results. This study included 1376 children (685 boys and 691 girls). Significant differences were observed in the frequency of flat feet between normal weight, overweight and obese (p = 0.006), where obese children were rated highest in the flat foot category. Overweight children had a 1.76 times higher chance to have a flat foot than those with normal weight (OR = 1.76; 95% CI 1.08-2.88), while obese children were 1.88 times more likely to have a flat foot than those with normal weight (OR = 1.88; 95% CI 1.14-3.11). Conclusion. The research showed that nutritional status was significantly associated with the presence of flat feet in schoolchildren. The high prevalence of flat foot and obesity in schoolchildren should be accepted as a warning sign, and many public health policies should be taken to solve these issues.


2021 ◽  
Vol 12 (1) ◽  
pp. 358
Author(s):  
Enrique Navarro ◽  
José M. Mancebo ◽  
Sima Farazi ◽  
Malena del Olmo ◽  
David Luengo

There are numerous articles that study the ground reaction forces during the golf swing, among which only a few analyze the pressure pattern distributed on the entire surface of the foot. The current study compares the pressure patterns on the foot insoles of fifty-five golfers, from three different performance levels, playing swings with driver and 5-iron clubs in the driving range. Five swings were selected for each club. During each swing, ultra-thin insole sensors (4 sensors/cm^2) measure foot pressure at the frequency of 100 Hz. To perform statistical analysis, insole sensors are clustered to form seven areas, with the normalized pressure of each area being our dependent variable. A video camera was used to label the five key instants of the swing. Statistical analysis demonstrates a significant difference between the pressure distribution pattern of the left and right feet for both driver and 5-iron. However, the pressure distribution pattern remains almost the same when switching the club type from 5-iron to driver. We have also observed that there are significant differences between the pattern of professionals and players with medium and high handicap. The obtained pattern agrees with the principle of weight transfer with a different behavior between the medial and lateral areas of the foot.


2021 ◽  
pp. 1-9
Author(s):  
Warlindo Carneiro da Silva Neto ◽  
Alexandre Dias Lopes ◽  
Ana Paula Ribeiro

Context: Running is a popular sport globally. Previous studies have used a gait retraining program to successfully lower impact loading, which has been associated with lower injury rates in recreational runners. However, there is an absence of studies on the effect of this training program on the plantar pressure distribution pattern during running. Objective: To investigate the short-term effect of a gait retraining strategy that uses visual biofeedback on the plantar pressure distribution pattern and foot posture in recreational runners. Design: Randomized controlled trial. Setting: Biomechanics laboratory. Participants: Twenty-four recreational runners were evaluated (n = 12 gait retraining group and n = 12 control group). Intervention: Those in the gait retraining group underwent a 2-week program (4 sessions/wk, 30 min/session, and 8 sessions). The participants in the control group were also invited to the laboratory (8 times in 2 wk), but no feedback on their running biomechanics was provided. Main Outcome Measures: The primary outcome measures were plantar pressure distribution and plantar arch index using a pressure platform. The secondary outcome measure was the foot posture index. Results: The gait retraining program with visual biofeedback was effective in reducing medial and lateral rearfoot plantar pressure after intervention and when compared with the control group. In the static condition, the pressure peak and maximum force on the forefoot and midfoot were reduced, and arch index was increased after intervention. After static training intervention, the foot posture index showed a decrease in the foot pronation. Conclusions: A 2-week gait retraining program with visual biofeedback was effective in lowering rearfoot plantar pressure, favoring better support of the arch index in recreational runners. In addition, static training was effective in reducing foot pronation. Most importantly, these observations will help healthcare professionals understand the importance of a gait retraining program with visual biofeedback to improve plantar loading and pronation during rehabilitation.


2020 ◽  
Vol 24 (4) ◽  
pp. 194-204
Author(s):  
Jarosław Jaszczur-Nowicki ◽  
Joanna Bukowska ◽  
Dariusz Kruczkowski ◽  
Michał Spieszny ◽  
Magdalena Pieniążek ◽  
...  

Background and Study Aim: The article presents the results of analyses of students’ foot pressure distribution on the ground, as well as their body balance before and after exercise (Harvard Step Test). The aim of the paper was to carry out a comparative analysis of foot pressure distribution on the ground, as well as assess the degree of body balance before and after exercise. With that purpose in view, the following research hypothesis was formulated: in the students participating in the study, the distribution of foot pressure on the ground and the degree of body balance differ significantly after physical effort compared with the at-rest conditions. Material and Methods: The study encompassed n=48 students, including 37 women and 11 men. The tests were carried out using such tools as: an EPS/R1 podobarographic mat and the impedance methods – i.e. the InBody 270 body composition analyser. An analysis was performed for the parameters concerning body composition, the distribution of foot pressure on the ground, and the level of body balance. Results: The results obtained revealed statistically significant differences in the physiological parameters of foot arching and the functional efficiency of the body balance system under different measurement conditions that reflected the impact of effort stimuli. Conclusions: Significant differences reflecting the impact of the effort stimuli were expected to be achieved during the mathematical analysis of the results of podobarographic tests that allow for the assessment of the physiological parameters of foot arching and the functional efficiency of the body balance system under different measurement conditions. The authors’ assumption was mathematically and statistically confirmed by significant differences foe most of the parameters arising out of the possibilities offered by the research method applied. Comparative assessment unquestionably revealed a negative change in foot arching, as well as lower body posture stability in the female and male subjects, resulting from the physical exercise applied.


PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e57209 ◽  
Author(s):  
Niki M. Stolwijk ◽  
Jacques Duysens ◽  
Jan Willem K. Louwerens ◽  
Yvonne HM. van de Ven ◽  
Noël LW. Keijsers

protocols.io ◽  
1970 ◽  
Author(s):  
Taian Vieira ◽  
Alberto Botter ◽  
Laura Gastaldi ◽  
Isabel C ◽  
Francesco Martelli ◽  
...  

2003 ◽  
Vol 24 (6) ◽  
pp. 486-489 ◽  
Author(s):  
Ulunay Kanatli ◽  
Haluk Yetkin ◽  
Nadir Yalcin

This study included 92 patients with an accessory navicular (AN) noted on an anteroposterior roentgenography. This group was selected from 860 patients admitted to the authors' gait analysis laboratory. The medial longitudinal arch was evaluated by using an “arch index” calculated from the pressure picture obtained from a pressure distribution measurement system. The average arch index was 0.15 and there was no significant correlation between AN types and arch index. The study concluded that the presence and type of AN are not correlated with the height of the medial longitudinal arch of the foot and that AN is not associated with pes planus.


2020 ◽  
Vol 47 (2) ◽  
pp. 217-226
Author(s):  
Dohee Jung ◽  
Chunghwi Yi ◽  
Woochol Joseph Choi ◽  
Joshua Sung H. You

BACKGROUND: Navicular drop is a common plantar deformity which makes the plantar medial longitudinal arch (MLA) collapse and leads to other deformities in lower extremities. Active structures are from intrinsic and extrinsic foot muscle activities such as abductor hallucis (AbdH), tibialis anterior (TA), tibialis posterior, flexor hallucis brevis, flexor digitorum brevis during dynamic situations. As AbdH plays a role as a dynamic elevator of MLA, the importance of AbdH has been emphasized and the proper recruitment of both intrinsic and extrinsic muscle is crucial for stabilization of MLA during dynamic weight bearing condition. Because the short foot (SF) exercise is difficult to perform and tends to activate the intrinsic muscles concentrically rather than a natural coordination of concentric-isometric-eccentric activation, we have developed the guidance-tubing SF gait (GFG) exercise. OBJECTIVE: We investigated the effect of GFG exercise on muscle activity, AbdH:TA activity ratio, MLA angle, and foot pressure distribution during walking compared to SF gait (SFG) exercise. METHODS: Thirty-two subjects with flexible flat feet were divided into two groups and performed SFG exercise with (GFG) and without guidance-tubing (SFG) for seven serial days. RESULTS: AbdH muscle activity significantly increased from foot flat to heel rise in the GFG group (p = 0.006). The AbdH:TA activity ratio significantly increased in both the SFG (p = 0.015) group and GFG group (p = 0.006). MLA angles significantly decreased in both the SFG group (p = 0.001) and GFG group (p = 0.000), and the decrement was significantly higher in the GFG group (p = 0.001). The foot pressure distribution did not show any statistically significant change. CONCLUSIONS: The result of this study provides a clinical implication for training MLA supporter muscles in individuals with flat feet. The overactive muscle must be inhibited first, then facilitation and strengthening are followed respectively.


2013 ◽  
Vol 44 (3) ◽  
pp. 503-509 ◽  
Author(s):  
Marcelo Castro ◽  
Sofia Abreu ◽  
Helena Sousa ◽  
Leandro Machado ◽  
Rubim Santos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document