scholarly journals Continuous Quantitative Risk Management in Smart Grids Using Attack Defense Trees

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4404 ◽  
Author(s):  
Erkuden Rios ◽  
Angel Rego ◽  
Eider Iturbe ◽  
Marivi Higuero ◽  
Xabier Larrucea

Although the risk assessment discipline has been studied from long ago as a means to support security investment decision-making, no holistic approach exists to continuously and quantitatively analyze cyber risks in scenarios where attacks and defenses may target different parts of Internet of Things (IoT)-based smart grid systems. In this paper, we propose a comprehensive methodology that enables informed decisions on security protection for smart grid systems by the continuous assessment of cyber risks. The solution is based on the use of attack defense trees modelled on the system and computation of the proposed risk attributes that enables an assessment of the system risks by propagating the risk attributes in the tree nodes. The method allows system risk sensitivity analyses to be performed with respect to different attack and defense scenarios, and optimizes security strategies with respect to risk minimization. The methodology proposes the use of standard security and privacy defense taxonomies from internationally recognized security control families, such as the NIST SP 800-53, which facilitates security certifications. Finally, the paper describes the validation of the methodology carried out in a real smart building energy efficiency application that combines multiple components deployed in cloud and IoT resources. The scenario demonstrates the feasibility of the method to not only perform initial quantitative estimations of system risks but also to continuously keep the risk assessment up to date according to the system conditions during operation.

2020 ◽  
pp. 685-695
Author(s):  
Danda B. Rawat ◽  
Brycent A. Chatfield

The transformation of the traditional power grid into a cyber physical smart energy grid brings significant improvement in terms of reliability, performance, and manageability. Most importantly, existing communication infrastructures such as LTE represent the backbone of smart grid functionality. Consequently, connected smart grids inherit vulnerabilities associated with the networks including denial of service attack by means of synchronization signal jamming. This chapter presents cybersecurity in cyber-physical energy grid systems to mitigate synchronization signal jamming attacks in LTE based smart grid communications.


Author(s):  
Adnan Rashid ◽  
Osman Hasan

Smart grids provide a digital upgradation of the conventional power grids by alleviating the power outages and voltage sags that occur due to their inefficient communication technologies and systems. They mainly tend to strengthen the efficiency, performance, and reliability of the traditional grids by establishing a trusted communication link between their different components through routing protocols. The conventional methods, i.e., the computer-based simulations and net testing, for analyzing these routing network protocols are error-prone and thus cannot be relied upon while analyzing the safety-critical smart grid systems. Formal methods can cater for the above-mentioned inaccuracies and thus can be very beneficial in analyzing communication protocols used in smart grids. In order to demonstrate the utilization and effectiveness of formal methods in analyzing smart grid routing protocols, we use the UPPAAL model checker to formally model the ZigBee-based routing protocol. We also verify some of its properties, such as, liveness, collision avoidance and deadlock freeness.


Author(s):  
Nawal Ait Aali ◽  
Amine Baina ◽  
Loubna Echabbi

Currently, smart grids have changed the world, given the great benefits of these critical infrastructures regarding the customers' satisfaction by offering them the electrical energy that they need for their business. Also, the smart grid aims to solve all the problems encountered in the current electrical grid (outage, lack of renewable energy, an excess in the produced power, etc.) by transmitting and sharing the information in real time between the different entities through the installation of the sensors. This chapter therefore presents the architecture of the smart grid by describing its objectives and advantages. In addition, the microgrids are presented as small electric networks. Then, focusing on the security aspects, an analysis of the different attacks and risks faced in the smart grids and more particularly in the microgrids is presented. After, different techniques and suitable security solutions are detailed to protect and secure the various elements of the smart grids and microgrids.


2015 ◽  
Vol 16 (2) ◽  
pp. 232
Author(s):  
Raja Masood Larik ◽  
Mohd Wazir Mustafa

<span style="line-height: 107%; font-family: 'Arial',sans-serif; font-size: 9pt; mso-fareast-font-family: Calibri; mso-fareast-theme-font: minor-latin; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;" lang="EN-US">Recently, the debate has been going on about the role of power plus distribution systems, its technologies for future smart grids in power systems. The emerging of new technologies in smart grid and power distribution systems provide a significant change in terms of reduction the commercial and technical losses, improve the rationalization of electricity tariff. The new technologies in smart grid systems have different capabilities to increase the technological efficiency in power distribution systems. These new technologies are the foreseeable solution to address the power system issues. This paper gives a brief detail of new technologies in smart grid systems for its power distribution systems, benefits and recent challenges. The paper provides a brief detail for new researchers and engineers about new technologies in smart grid systems and how to change traditional distribution systems into new smart systems.</span>


2022 ◽  
pp. 1-20
Author(s):  
Safwan Nadweh ◽  
Zeina Barakat

This chapter describes the upcoming technology for electrical power systems that gives the appropriate solution for the integration of the distributed energy resources. In this chapter, different categories of smart grids have been classified, and the advantages, weakness, and opportunities of each one, are given in addition to determining its own operating conditions. Micro-grids are the most common kind of smart grid. It has been classified under different criteria, such as architecture with different topology (connected mode, island mode, etc.) and demand criteria (simple micro grids, multi-DG, utility) and by capacity into simple micro-grid, corporate micro-grid, and independent micro-grid, and by AC/DC type to DC micro-grids, AC micro-grids, Hybrid micro-grids. Finally, most familiar Micro-grid components have been discussed such as an energy management system along with several types of control and communication systems in addition to the economic study of a micro-grids.


2022 ◽  
pp. 1317-1334
Author(s):  
Nawal Ait Aali ◽  
Amine Baina ◽  
Loubna Echabbi

Currently, smart grids have changed the world, given the great benefits of these critical infrastructures regarding the customers' satisfaction by offering them the electrical energy that they need for their business. Also, the smart grid aims to solve all the problems encountered in the current electrical grid (outage, lack of renewable energy, an excess in the produced power, etc.) by transmitting and sharing the information in real time between the different entities through the installation of the sensors. This chapter therefore presents the architecture of the smart grid by describing its objectives and advantages. In addition, the microgrids are presented as small electric networks. Then, focusing on the security aspects, an analysis of the different attacks and risks faced in the smart grids and more particularly in the microgrids is presented. After, different techniques and suitable security solutions are detailed to protect and secure the various elements of the smart grids and microgrids.


Author(s):  
Safwan Nadweh ◽  
Zeina Barakat

This chapter describes the upcoming technology for electrical power systems that gives the appropriate solution for the integration of the distributed energy resources. In this chapter, different categories of smart grids have been classified, and the advantages, weakness, and opportunities of each one, are given in addition to determining its own operating conditions. Micro-grids are the most common kind of smart grid. It has been classified under different criteria, such as architecture with different topology (connected mode, island mode, etc.) and demand criteria (simple micro grids, multi-DG, utility) and by capacity into simple micro-grid, corporate micro-grid, and independent micro-grid, and by AC/DC type to DC micro-grids, AC micro-grids, Hybrid micro-grids. Finally, most familiar Micro-grid components have been discussed such as an energy management system along with several types of control and communication systems in addition to the economic study of a micro-grids.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4862 ◽  
Author(s):  
Tejasvi Alladi ◽  
Vinay Chamola ◽  
Joel J. P. C. Rodrigues ◽  
Sergei A. Kozlov

With the integration of Wireless Sensor Networks and the Internet of Things, the smart grid is being projected as a solution for the challenges regarding electricity supply in the future. However, security and privacy issues in the consumption and trading of electricity data pose serious challenges in the adoption of the smart grid. To address these challenges, blockchain technology is being researched for applicability in the smart grid. In this paper, important application areas of blockchain in the smart grid are discussed. One use case of each area is discussed in detail, suggesting a suitable blockchain architecture, a sample block structure and the potential blockchain technicalities employed in it. The blockchain can be used for peer-to-peer energy trading, where a credit-based payment scheme can enhance the energy trading process. Efficient data aggregation schemes based on the blockchain technology can be used to overcome the challenges related to privacy and security in the grid. Energy distribution systems can also use blockchain to remotely control energy flow to a particular area by monitoring the usage statistics of that area. Further, blockchain-based frameworks can also help in the diagnosis and maintenance of smart grid equipment. We also discuss several commercial implementations of blockchain in the smart grid. Finally, various challenges to be addressed for integrating these two technologies are discussed.


Computers ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 76
Author(s):  
Rituka Jaiswal ◽  
Reggie Davidrajuh ◽  
Chunming Rong

Cloud Computing provides on-demand computing services like software, networking, storage, analytics, and intelligence over the Internet (“the cloud”). But it is facing challenges because of the explosion of the Internet of Things (IoT) devices and the volume, variety, veracity and velocity of the data generated by these devices. There is a need for ultra-low latency, reliable service along with security and privacy. Fog Computing is a promising solution to overcome these challenges. The originality, scope and novelty of this paper is the definition and formulation of the problem of smart neighborhoods in context of smart grids. This is achieved through an extensive literature study, firstly on Fog Computing and its foundation technologies, its applications and the literature review of Fog Computing research in various application domains. Thereafter, we introduce smart grid and community MicroGrid concepts and, their challenges to give the in depth background of the problem and hence, formalize the problem. The smart grid, which ensures reliable, secure, and cost-effective power supply to the smart neighborhoods, effectively needs Fog Computing architecture to achieve its purpose. This paper also identifies, without rigorous analysis, potential solutions to address the problem of smart neighborhoods. The challenges in the integration of Fog Computing and smart grids are also discussed.


Author(s):  
Danda B. Rawat ◽  
Brycent A. Chatfield

The transformation of the traditional power grid into a cyber physical smart energy grid brings significant improvement in terms of reliability, performance, and manageability. Most importantly, existing communication infrastructures such as LTE represent the backbone of smart grid functionality. Consequently, connected smart grids inherit vulnerabilities associated with the networks including denial of service attack by means of synchronization signal jamming. This chapter presents cybersecurity in cyber-physical energy grid systems to mitigate synchronization signal jamming attacks in LTE based smart grid communications.


Sign in / Sign up

Export Citation Format

Share Document