scholarly journals Electrochemical Affinity Biosensors Based on Selected Nanostructures for Food and Environmental Monitoring

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5125
Author(s):  
Susana Campuzano ◽  
Paloma Yáñez-Sedeño ◽  
José M. Pingarrón

The excellent capabilities demonstrated over the last few years by electrochemical affinity biosensors should be largely attributed to their coupling with particular nanostructures including dendrimers, DNA-based nanoskeletons, molecular imprinted polymers, metal-organic frameworks, nanozymes and magnetic and mesoporous silica nanoparticles. This review article aims to give, by highlighting representative methods reported in the last 5 years, an updated and general overview of the main improvements that the use of such well-ordered nanomaterials as electrode modifiers or advanced labels confer to electrochemical affinity biosensors in terms of sensitivity, selectivity, stability, conductivity and biocompatibility focused on food and environmental applications, less covered in the literature than clinics. A wide variety of bioreceptors (antibodies, DNAs, aptamers, lectins, mast cells, DNAzymes), affinity reactions (single, sandwich, competitive and displacement) and detection strategies (label-free or label-based using mainly natural but also artificial enzymes), whose performance is substantially improved when used in conjunction with nanostructured systems, are critically discussed together with the great diversity of molecular targets that nanostructured affinity biosensors are able to quantify using quite simple protocols in a wide variety of matrices and with the sensitivity required by legislation. The large number of possibilities and the versatility of these approaches, the main challenges to face in order to achieve other pursued capabilities (development of antifouling, continuous operation, wash-, calibration- and reagents-free devices, regulatory or Association of Official Analytical Chemists, AOAC, approval) and decisive future actions to achieve the commercialization and acceptance of these devices in our daily routine are also noted at the end.

2020 ◽  
Vol 13 ◽  
Author(s):  
Rohit Bhatia ◽  
Amit Sharma ◽  
Raj Kumar Narang ◽  
Ravindra K. Rawal

: Cancer is one of the most serious health concerns in 21st century whose prevalence is beyond boundaries and can affect any organ of human beings. The conventional chemotherapeutic treatment strategies lack specificity to tumours and are associated with toxic effects on immune system and other organ systems. In the past decades, there has been a continuous progress in the development of smart nanocarrier systems for target specific delivery of drugs against variety of tumours including intracellular gene-specific targeting. These nanocarriers are able to recognize the tumour cells and deliver the therapeutic agent in fixed proportions causing no or very less harm to healthy cells. Nanosystems have modified physicochemical properties, improved bioavailability and long retention in blood which enhances their potency. A huge number of nanocarrier based formulations have been developed and are in clinical trials. Nanocarrier systems include polymeric micelles, liposomes, dendrimers, carbon nanotubes, gold nanoparticles, etc. Recent advancements in nanocarrier systems include mesoporous silica nanoparticles (MSNs), metal organic frame works and quantum dots. In the present review, various nanocarrier based drug delivery systems along with their applications in the management of cancer have been described with special emphasis on MSNs.


2021 ◽  
Vol 50 (14) ◽  
pp. 4757-4764
Author(s):  
Yan Yan Li ◽  
Dong Luo ◽  
Kun Wu ◽  
Xiao-Ping Zhou

This review article summarizes the assembly, structures, and topologies of gyroidal metal–organic frameworks. Their applications in gas adsorption, catalysis, sensors, and luminescent materials are also discussed in detail.


2021 ◽  
pp. 1-10
Author(s):  
F. Jahangiri-Dehaghani ◽  
H.R. Zare ◽  
Z. Shekari

A label-free electrochemical aptasensor was constructed for the sensitive and selective determination of AFM1. For preparation of the aptasensor, the AFM1 aptamer was immobilised on the surface of a glassy carbon electrode modified with hemin encapsulated in Fe-based metal-organic frameworks (hemin@Fe-MIL-101). The morphology and the structure of Fe-MIL-101 and hemin@Fe-MIL-101 were evaluated by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray powder diffraction and Brunauer-Emmett-Teller-N2 sorption methods. Electrochemical impedance spectroscopy and cyclic voltammetry were performed to monitor the fabrication process of the electrochemical aptasensor. The electrochemical reduction current of hemin encapsulated in Fe-MIL-101 serves as a signal for the quantitative determination of AFM1. Differential pulse voltammetry was done to determine the AFM1 concentration in the linear range of 1.0×10-1-100.0 ng/ml. The detection limit of AFM1 was estimated to be 4.6×10-2 ng/ml. Finally, the fabricated aptasensor was applied to determine AFM1 in raw and boiled milk samples.


Talanta ◽  
2021 ◽  
Vol 221 ◽  
pp. 121399
Author(s):  
Ke-Yang Wu ◽  
Ming Chen ◽  
Nai-Hai Huang ◽  
Rong-Tian Li ◽  
Wei-Lun Pan ◽  
...  

2020 ◽  
Vol 49 (26) ◽  
pp. 8918-8926 ◽  
Author(s):  
Sheta M. Sheta ◽  
Said M. El-Sheikh ◽  
Diaa I. Osman ◽  
Aliaa M. Salem ◽  
Omnia I. Ali ◽  
...  

A novel label-free electrochemical biosensor constructed using a polyaniline@nickel metal–organic framework (Ni-MOF) nanocomposite for direct detection of HCV-RNA.


Sign in / Sign up

Export Citation Format

Share Document