scholarly journals A Low-Cost 3D Phenotype Measurement Method of Leafy Vegetables Using Video Recordings from Smartphones

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6068
Author(s):  
Zishang Yang ◽  
Yuxing Han

Leafy vegetables are an essential source of the various nutrients that people need in their daily lives. The quantification of vegetable phenotypes and yield estimation are prerequisites for the selection of genetic varieties and for the improvement of planting methods. The traditional method is manual measurement, which is time-consuming and cumbersome. Therefore, there is a need for efficient and convenient in situ vegetable phenotype identification methods to provide data support for breeding research and for crop yield monitoring, thereby increasing vegetable yield. In this paper, a novel approach was developed for the in-situ determination of the three-dimensional (3D) phenotype of vegetables by recording video clips using smartphones. First, a smartphone was used to record the vegetable from different angles, and then the key frame containing the crop area in the video was obtained using an algorithm based on the vegetation index and scale-invariant feature transform algorithm (SIFT) matching. After obtaining the key frame, a dense point cloud of the vegetables was reconstructed using the Structure from Motion (SfM) method, and then the segmented point cloud and a point cloud skeleton were obtained using the clustering algorithm. Finally, the plant height, leaf number, leaf length, leaf angle, and other phenotypic parameters were obtained through the point cloud and point cloud skeleton. Comparing the obtained phenotypic parameters to the manual measurement results, the root-mean-square error (RMSE) of the plant height, leaf number, leaf length, and leaf angle were 1.82, 1.57, 2.43, and 4.7, respectively. The measurement accuracy of each indicators is greater than 80%. The results show that the proposed method provides a convenient, fast, and low-cost 3D phenotype measurement pipeline. Compared to other methods based on photogrammetry, this method does not need a labor-intensive image-capturing process and can reconstruct a high-quality point cloud model by directly recording videos of crops.

2021 ◽  
Vol 1 (1) ◽  
pp. 51-56
Author(s):  
Dayang Nur Hidayah Abg Muis ◽  
Azimah Hamidon ◽  
Nor Elliza Tajidin ◽  
Zahir Shah Safari

Overfertilization on leafy vegetables could accumulate high nitrate content. Exceeded recommended limit of nitrate content can cause detrimental effects on the environment and human health, such as methemoglobinemia and stomach cancer. Green coral lettuce (GCL) is a leafy vegetable commonly grown under various production systems. Production system and physiological age have affected the growth and accumulation of nitrate levels in most leafy vegetables. Therefore, this study aims to determine the effects of hydroponic and conventional production on the growth performance and nitrate concentration of GCL at different harvest ages. This research was conducted in a randomized complete block design with a factorial arrangement of treatments. A stagnant hydroponic was prepared using stock A and B complete Hoagland nutrient solutions as liquid fertilizer. A commercial biofertilizer (NPK 8: 8: 8) was applied at the rate of 100 g per plant. Plant growth performance, including plant height, number of leaves, and leaf length, was measured at 7, 14, 21, 28, 31, 34, 41, and 44 days after transplanting (DAT). The fresh weight and nitrate content were measured at 31, 34, 41, and 44 DAT. The results showed hydroponic GCL exhibited higher plant height than conventional GCL. However, both productions were not significantly affected regarding the number of leaves, leaf length, and fresh weight. At 41 and 44 DAT, the hydroponic GCL was markedly higher in nitrate content than conventional. This study found that conventional production was recommended for GCL because lower in nitrate content compared to hydroponic and fair in growth performance.


Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.


Author(s):  
Aradhana Phukan ◽  
P. K. Barua ◽  
D. Sarma ◽  
S. D. Deka

Two CMS lines, IR 58025A and IR 68888A along with their maintainers and two fertility restorers, LuitR and IR 36R, were evaluated for flower and plant characters during early ahu (February-June) and kharif (July-November) seasons. IR 58025A showed longer stigmata and styles, and higher spikelet Length/Breadth (L/B) ratio while IR 68888A showed broader stigmata and wider glume opening angle in both the seasons. IR 68888A also exhibited higher pollen sterility during early ahu. IR 36R was characterized with broad anthers. LuitR showed longer and broader anthers with more pollen than others. Plant height, flag leaf length, flag leaf width and area were higher in IR 36R. Panicle exsertion was complete in pollen parents whereas it was 78-80% in CMS lines. The widest flag leaf angle was found in IR 58025B during early Ahu and in IR 36R during kharif. Kharif season was more favourable for growth of the plants with higher seed set percentage while floral traits of the CMS lines were better expressed in early Ahu. Manipulation of the seeding sequence of the parental lines in early Ahu is warranted for better seed set provided the seed crop escapes heavy premonsoon showers during reproductive stage. IR 68888A/LuitR was a good combination for pollen dispersal and seed setting.


2019 ◽  
Author(s):  
Nikki Theofanopoulou ◽  
Katherine Isbister ◽  
Julian Edbrooke-Childs ◽  
Petr Slovák

BACKGROUND A common challenge within psychiatry and prevention science more broadly is the lack of effective, engaging, and scale-able mechanisms to deliver psycho-social interventions for children, especially beyond in-person therapeutic or school-based contexts. Although digital technology has the potential to address these issues, existing research on technology-enabled interventions for families remains limited. OBJECTIVE The aim of this pilot study was to examine the feasibility of in-situ deployments of a low-cost, bespoke prototype, which has been designed to support children’s in-the-moment emotion regulation efforts. This prototype instantiates a novel intervention model that aims to address the existing limitations by delivering the intervention through an interactive object (a ‘smart toy’) sent home with the child, without any prior training necessary for either the child or their carer. This pilot study examined (i) engagement and acceptability of the device in the homes during 1 week deployments; and (ii) qualitative indicators of emotion regulation effects, as reported by parents and children. METHODS In this qualitative study, ten families (altogether 11 children aged 6-10 years) were recruited from three under-privileged communities in the UK. The RA visited participants in their homes to give children the ‘smart toy’ and conduct a semi-structured interview with at least one parent from each family. Children were given the prototype, a discovery book, and a simple digital camera to keep at home for 7-8 days, after which we interviewed each child and their parent about their experience. Thematic analysis guided the identification and organisation of common themes and patterns across the dataset. In addition, the prototypes automatically logged every interaction with the toy throughout the week-long deployments. RESULTS Across all 10 families, parents and children reported that the ‘smart toy’ was incorporated into children’s emotion regulation practices and engaged with naturally in moments children wanted to relax or calm down. Data suggests that children interacted with the toy throughout the duration of the deployment, found the experience enjoyable, and all requested to keep the toy longer. Child emotional connection to the toy—caring for its ‘well-being’—appears to have driven this strong engagement. Parents reported satisfaction with and acceptability of the toy. CONCLUSIONS This is the first known study investigation of the use of object-enabled intervention delivery to support emotion regulation in-situ. The strong engagement and qualitative indications of effects are promising – children were able to use the prototype without any training and incorporated it into their emotion regulation practices during daily challenges. Future work is needed to extend this indicative data with efficacy studies examining the psychological efficacy of the proposed intervention. More broadly, our findings suggest the potential of a technology-enabled shift in how prevention interventions are designed and delivered: empowering children and parents through ‘child-led, situated interventions’, where participants learn through actionable support directly within family life, as opposed to didactic in-person workshops and a subsequent skills application.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yongmeng Wu ◽  
Cuibo Liu ◽  
Changhong Wang ◽  
Yifu Yu ◽  
Yanmei Shi ◽  
...  

AbstractElectrocatalytic alkyne semi-hydrogenation to alkenes with water as the hydrogen source using a low-cost noble-metal-free catalyst is highly desirable but challenging because of their over-hydrogenation to undesired alkanes. Here, we propose that an ideal catalyst should have the appropriate binding energy with active atomic hydrogen (H*) from water electrolysis and a weaker adsorption with an alkene, thus promoting alkyne semi-hydrogenation and avoiding over-hydrogenation. So, surface sulfur-doped and -adsorbed low-coordinated copper nanowire sponges are designedly synthesized via in situ electroreduction of copper sulfide and enable electrocatalytic alkyne semi-hydrogenation with over 99% selectivity using water as the hydrogen source, outperforming a copper counterpart without surface sulfur. Sulfur anion-hydrated cation (S2−-K+(H2O)n) networks between the surface adsorbed S2− and K+ in the KOH electrolyte boost the production of active H* from water electrolysis. And the trace doping of sulfur weakens the alkene adsorption, avoiding over-hydrogenation. Our catalyst also shows wide substrate scopes, up to 99% alkenes selectivity, good reducible groups compatibility, and easily synthesized deuterated alkenes, highlighting the promising potential of this method.


Author(s):  
Zhikai Shi ◽  
Zebin Yu ◽  
Ronghua Jiang ◽  
Jun Huang ◽  
Yanping Hou ◽  
...  

The oxygen evolution reaction (OER) is an important half-reaction in the field of energy production. However, how effectively, simply, and greenly to prepare low-cost OER electrocatalysts remains a problem. Herein,...


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 616
Author(s):  
Virginia Birlanga ◽  
José Ramón Acosta-Motos ◽  
José Manuel Pérez-Pérez

Cultivated lettuce (Lactuca sativa L.) is one of the most important leafy vegetables in the world, and most of the production is concentrated in the Mediterranean Basin. Hydroponics has been successfully utilized for lettuce cultivation, which could contribute to the diversification of production methods and the reduction of water consumption and excessive fertilization. We devised a low-cost procedure for closed hydroponic cultivation and easy phenotyping of root and shoot attributes of lettuce. We studied 12 lettuce genotypes of the crisphead and oak-leaf subtypes, which differed on their tipburn resistance, for three growing seasons (Fall, Winter, and Spring). We found interesting genotype × environment (G × E) interactions for some of the studied traits during early growth. By analyzing tipburn incidence and leaf nutrient content, we were able to identify a number of nutrient traits that were highly correlated with cultivar- and genotype-dependent tipburn. Our experimental setup will allow evaluating different lettuce genotypes in defined nutrient solutions to select for tipburn-tolerant and highly productive genotypes that are suitable for hydroponics.


2021 ◽  
Vol 11 (3) ◽  
pp. 913
Author(s):  
Chang Yuan ◽  
Shusheng Bi ◽  
Jun Cheng ◽  
Dongsheng Yang ◽  
Wei Wang

For a rotating 2D lidar, the inaccurate matching between the 2D lidar and the motor is an important error resource of the 3D point cloud, where the error is shown both in shape and attitude. Existing methods need to measure the angle position of the motor shaft in real time to synchronize the 2D lidar data and the motor shaft angle. However, the sensor used for measurement is usually expensive, which can increase the cost. Therefore, we propose a low-cost method to calibrate the matching error between the 2D lidar and the motor, without using an angular sensor. First, the sequence between the motor and the 2D lidar is optimized to eliminate the shape error of the 3D point cloud. Next, we eliminate the attitude error with uncertainty of the 3D point cloud by installing a triangular plate on the prototype. Finally, the Levenberg–Marquardt method is used to calibrate the installation error of the triangular plate. Experiments verified that the accuracy of our method can meet the requirements of the 3D mapping of indoor autonomous mobile robots. While we use a 2D lidar Hokuyo UST-10LX with an accuracy of ±40 mm in our prototype, we can limit the mapping error within ±50 mm when the distance is no more than 2.2996 m for a 1 s scan (mode 1), and we can limit the mapping error within ±50 mm at the measuring range 10 m for a 16 s scan (mode 7). Our method can reduce the cost while the accuracy is ensured, which can make a rotating 2D lidar cheaper.


Sign in / Sign up

Export Citation Format

Share Document