scholarly journals Development of Test Equipment for Pedestrian-Automatic Emergency Braking Based on C-NCAP (2018)

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6206
Author(s):  
Zhiqiang Song ◽  
Libo Cao ◽  
Clifford C. Chou

In order to evaluate the effectiveness of a pedestrian-automatic emergency braking (PAEB) system on pedestrian protection, a set of PAEB test equipment was developed according to the test requirement of China-New Car Assessment Program (C-NCAP) (2018) in this study. In the aspect of system control strategy, global positioning system (GPS) differential positioning was used to achieve the required measurement and positioning accuracy, the collaborative control between the PAEB test equipment and automated driving robot (ADR) was achieved by wireless communication, and the motion state of the dummy target in the PAEB system was controlled by using the S-shaped-curve velocity control method. Part of the simulations and field tests were conducted according to the scenario requirements specified in C-NCAP (2018). The experimental and simulated results showed that the test equipment demonstrated high accuracy and precision in the process of testing, the dummy target movement was smooth and stable, complying with the requirements of PAEB tests set forth in C-NCAP (2018), and yielding satisfactory results as designed. Subsequently, the performance of the AEB of a vehicle under test (VUT) was conducted and the score for star-rating to evaluate the performance level of AEB calculated. Results indicated the developed test equipment in this study could be used to evaluate the performance of the PAEB system with effectiveness.

Author(s):  
Shihuan Li ◽  
Lei Wang

For L4 and above autonomous driving levels, the automatic control system has been redundantly designed, and a new steering control method based on brake has been proposed; a new dual-track model has been established through multiple driving tests. The axle part of the model was improved, the accuracy of the transfer function of the model was verified again through acceleration-slide tests; a controller based on interference measurement was designed on the basis of the model, and the relationships between the controller parameters was discussed. Through the linearization of the controller, the robustness of uncertain automobile parameters is discussed; the control scheme is tested and verified through group driving test, and the results prove that the accuracy and precision of the controller meet the requirements, the robustness stability is good. Moreover, the predicted value of the model fits well with the actual observation value, the proposal of this method provides a new idea for avoiding car out of control.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Mengyan Hu ◽  
Xiangmo Zhao ◽  
Fei Hui ◽  
Bin Tian ◽  
Zhigang Xu ◽  
...  

Vehicle platooning is a perspective technique for intelligent transportation systems (ITS). Connected and automated vehicles (CAVs) use dedicated short-range communication (DSRC) to form a convoy, in which the following vehicles can receive the information from their preceding vehicles to achieve safe automated driving and maintain a short headway. Consequently, a vehicle platoon can improve traffic safety and efficiency, further reducing fuel consumption. However, emergency braking inevitably occurs when the platoon meets an accident or a sudden mechanical failure. It is more critical when the wireless communication got delays. Therefore, “how to predefine a minimum safe distance (MSD) considering communication delay” is a challenging issue. To this end, a series of field tests were carried out to measure the communication delay of IEEE 802.11p that is the underlying protocol of DSRC. Subsequently, MSD is modeled and analyzed when the platoon travels at accelerating, cruising, and decelerating states. More importantly, the results of field tests are applied in the models to investigate the impact of communication delay on MSD in practice. The simulation results verify that the proposed model can effectively maintain the platooning vehicles’ safety even if emergency braking happens with certain communication delays.


2013 ◽  
Vol 712-715 ◽  
pp. 2888-2893
Author(s):  
Hai Qiang Liu ◽  
Ming Lv

In order to realize information sharing and interchange of complex product multidisciplinary collaborative design (MCD) design process and resources. The Process integrated system control of product multidisciplinary collaborative design was analyzed firstly in this paper, then design process of complex product for supporting multidisciplinary collaborative was introduced, a detailed description is given of the organization structure and modeling process of MCD-oriented Integration of Product Design Meta-model ; and concrete implement process of process integrated system control method was introduced to effectively realize information sharing and interchange between product design process and resources.


2013 ◽  
Vol 738 ◽  
pp. 272-275
Author(s):  
Dun Chen Lan

In the field of mechanical automation, intelligent industrial robot technology is an important branch in the research field of robot; it is always the hot spots of the world robot research, and it being used to get the application in the industry today. Robot experiment platform of PLC and motor control technology, it based on the control method used by the robot control system improvements to make it more perfect run more precise, reasonable. In the same time, the man-machine interface state run monitoring, to ensure the normal operation of the system. Improved control method of the improvement of the work efficiency, reduce the work of the workers a duplication degree have a significant effect, and the system control at the scene, especially PLC control has excellent control function and good cost performance .


2021 ◽  
Vol 11 (22) ◽  
pp. 10744
Author(s):  
Changliang Han ◽  
Houqiang Yang ◽  
Nong Zhang ◽  
Rijian Deng ◽  
Yuxin Guo

The gob-side roadway in an isolated island working face is a typical representative of a strong mining roadway, which seriously restricts the efficient and safe production of underground coal mines. With the engineering background of the main transportation roadway 1513 (MTR 1513) of the Xinyi Coal Mine, this paper introduces the engineering case of gob-side roadway driving with small coal-pillar facing mining in an isolated island working face under the alternate mining of wide and narrow working faces. Through comprehensive research methods, we studied zoning disturbance deformation characteristics and stress evolution law of gob-side roadway driving under face mining. Based on the characteristics of zoning disturbance, MTR 1513 is divided into three zones, which are the heading face mining zone, the mining influenced zone, and the mining stability zone. A collaborative control technology using pressure relief and anchoring is proposed, and the differentiated control method is formed for the three zones. For the heading face mining zone, the control method of anchoring first and then pressure relief is adopted; for the mining influenced zone, the control idea of synchronous coordination of pressure relief and anchorage is adopted; for the mining stability zone, the control method of anchoring without pressure relief is adopted. Engineering practices show that the disturbance influence distance of working face 1511 on MTR 1513 changes from 110 m advanced to 175 m delay. At this time, the surrounding rock deformation is effectively controlled, which verified the rationality of the division and the feasibility of three zoning control technology. The research results can provide reference for gob-side roadway driving with small coal pillar facing mining in a special isolated island working face.


2018 ◽  
Vol 232 ◽  
pp. 04008
Author(s):  
Xiao-Jun Zhang

UAV avionics system is prone to saturation distortion under unsteady conditions, so anti-saturation control is needed. A control method of UAV avionics system based on anti-saturation feedback compensation is proposed. The anti-saturation control process of UAV avionics system is a multi-objective optimization process with multi-variables. The constrained parameter model of UAV avionics system control is constructed. Electromagnetic loss, torque, output power and other parameters are taken as constraint indexes, the original control information of UAV avionics system is treated with self-stabilization, the equivalent control circuit is designed, and the magnetic resonance transmission mode of avionics system is analyzed. An anti-saturation feedback tracking control method is used for steady-state control of the output voltage of the avionics system. The error compensation function is constructed to adjust the output adaptive parameters of the avionics system and the static anti-saturation compensator is constructed to compensate the power gain. The yaw error and the output steady-state error of the avionics system are reduced. The simulation results show that the proposed method has better output stability, lower output error, better real-time performance and better linear auto-disturbance rejection control performance.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xia Lu

Finance is the core of modern economy. The security and stability of the financial system is the key to stable economic and social development. During the operation of the financial system, financial chaos such as the severe turbulence of the financial market and the financial crisis occurred due to deterministic instability, which brought a great negative impact on economic growth and social stability. For the financial chaotic system, an intermittent feedback controller is designed in this paper. By adjusting the controller parameters, the financial system can be controlled from chaotic to periodic evolution. First, the dynamic equations and controllers of the financial system are analyzed and the range of values of the controller parameters is theoretically obtained. Then, the influence of parameters on the system is studied, and the feasibility of the proposed method is proved by numerical simulation. Finally, the practical significance of the controller on the macrocontrol of the financial crisis is discussed. It is theoretically proven that when the financial crisis comes, the financial system can be stabilized more quickly through appropriate control methods.


2018 ◽  
Vol 176 ◽  
pp. 01013
Author(s):  
Yeqin Wang ◽  
Yuan Zhang ◽  
Yiguo Deng ◽  
Lijiao Wei ◽  
Shengli Liu

In this paper, the quantitative control method and system control process of the natural rubber forest quantitative fertilization system are introduced on the basis of the demand for the quantitative fertilization of natural rubber forest and the application process of the rubber forest fertilizing machine. The selection of PLC, frequency converter type selection and software design process are described in detail.


Sign in / Sign up

Export Citation Format

Share Document