scholarly journals Synergy Effect of Combined Near and Mid-Infrared Fibre Spectroscopy for Diagnostics of Abdominal Cancer

Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6706
Author(s):  
Thaddäus Hocotz ◽  
Olga Bibikova ◽  
Valeria Belikova ◽  
Andrey Bogomolov ◽  
Iskander Usenov ◽  
...  

Cancers of the abdominal cavity comprise one of the most prevalent forms of cancers, with the highest contribution from colon and rectal cancers (12% of the human population), followed by stomach cancers (4%). Surgery, as the preferred choice of treatment, includes the selection of adequate resection margins to avoid local recurrences due to minimal residual disease. The presence of functionally vital structures can complicate the choice of resection margins. Spectral analysis of tissue samples in combination with chemometric models constitutes a promising approach for more efficient and precise tumour margin identification. Additionally, this technique provides a real-time tumour identification approach not only for intraoperative application but also during endoscopic diagnosis of tumours in hollow organs. The combination of near-infrared and mid-infrared spectroscopy has advantages compared to individual methods for the clinical implementation of this technique as a diagnostic tool.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tim Kümmel ◽  
Björn van Marwick ◽  
Miriam Rittel ◽  
Carina Ramallo Guevara ◽  
Felix Wühler ◽  
...  

AbstractFrozen section analysis is a frequently used method for examination of tissue samples, especially for tumour detection. In the majority of cases, the aim is to identify characteristic tissue morphologies or tumour margins. Depending on the type of tissue, a high number of misdiagnoses are associated with this process. In this work, a fast spectroscopic measurement device and workflow was developed that significantly improves the speed of whole frozen tissue section analyses and provides sufficient information to visualize tissue structures and tumour margins, dependent on their lipid and protein molecular vibrations. That optical and non-destructive method is based on selected wavenumbers in the mid-infrared (MIR) range. We present a measuring system that substantially outperforms a commercially available Fourier Transform Infrared (FT-IR) Imaging system, since it enables acquisition of reduced spectral information at a scan field of 1 cm2 in 3 s, with a spatial resolution of 20 µm. This allows fast visualization of segmented structure areas with little computational effort. For the first time, this multiphotometric MIR system is applied to biomedical tissue sections. We are referencing our novel MIR scanner on cryopreserved murine sagittal and coronal brain sections, especially focusing on the hippocampus, and show its usability for rapid identification of primary hepatocellular carcinoma (HCC) in mouse liver.


2007 ◽  
Vol 50 (2-3) ◽  
pp. 211-216 ◽  
Author(s):  
S.V. Bandara ◽  
S.D. Gunapala ◽  
D.Z. Ting ◽  
J.K. Liu ◽  
C.J. Hill ◽  
...  

1993 ◽  
Vol 1 (2) ◽  
pp. 99-108 ◽  
Author(s):  
P. Robert ◽  
M.F. Devaux ◽  
A. Qannari ◽  
M. Safar

Multivariate data treatments were applied to mid and near infrared spectra of glucose, fructose and sucrose solutions in order to specify near infrared frequencies that characterise each carbohydrate. As a first step, the mid and near infrared regions were separately studied by performing Principal Component Analyses. While glucose, fructose and sucrose could be clearly identified on the similarity maps derived from the mid infrared spectra, only the total sugar content of the solutions was observed when using the near infrared region. Characteristic wavelengths of the total sugar content were found at 2118, 2270 and 2324 nm. In a second step, the mid and near infrared regions were jointly studied by a Canonical Correlation Analysis. As the assignments of frequencies are generally well known in the mid infrared region, it should be useful to study the relationships between the two infrared regions. Thus, the canonical patterns obtained from the near infrared spectra revealed wavelengths that characterised each carbohydrate. The OH and CH combination bands were observed at: 2088 and 2332 nm for glucose, 2134 and 2252 nm for fructose, 2058 and 2278 nm for sucrose. Although a precise assignment of the near infrared bands to chemical groups within the molecules was not possible, the present work showed that near infrared spectra of carbohydrates presented specific features.


Oceans ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 315-329
Author(s):  
Antoine Collin ◽  
Mark Andel ◽  
David Lecchini ◽  
Joachim Claudet

Shallow coral reefs ensure a wide portfolio of ecosystem services, from fish provisioning to tourism, that support more than 500 million people worldwide. The protection and sustainable management of these pivotal ecosystems require fine-scale but large-extent mapping of their 3D composition. The sub-metre spaceborne imagery can neatly produce such an expected product using multispectral stereo-imagery. We built the first 3D land-sea coral reefscape mapping using the 0.3 m superspectral WorldView-3 stereo-imagery. An array of 13 land use/land cover and sea use/sea cover habitats were classified using sea-, ground- and air-truth data. The satellite-derived topography and bathymetry reached vertical accuracies of 1.11 and 0.89 m, respectively. The value added of the eight mid-infrared (MIR) channels specific to the WorldView-3 was quantified using the classification overall accuracy (OA). With no topobathymetry, the best combination included the eight-band optical (visible + near-infrared) and the MIR8, which boosted the basic blue-green-red OA by 9.58%. The classes that most benefited from this MIR information were the land use “roof” and land cover “soil” classes. The addition of the satellite-derived topobathymetry to the optical+MIR1 produced the best full combination, increasing the basic OA by 9.73%, and reinforcing the “roof” and “soil” distinction.


Sign in / Sign up

Export Citation Format

Share Document