scholarly journals Foot Strike Angle Prediction and Pattern Classification Using LoadsolTM Wearable Sensors: A Comparison of Machine Learning Techniques

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6737
Author(s):  
Stephanie R. Moore ◽  
Christina Kranzinger ◽  
Julian Fritz ◽  
Thomas Stӧggl ◽  
Josef Krӧll ◽  
...  

The foot strike pattern performed during running is an important variable for runners, performance practitioners, and industry specialists. Versatile, wearable sensors may provide foot strike information while encouraging the collection of diverse information during ecological running. The purpose of the current study was to predict foot strike angle and classify foot strike pattern from LoadsolTM wearable pressure insoles using three machine learning techniques (multiple linear regression―MR, conditional inference tree―TREE, and random forest―FRST). Model performance was assessed using three-dimensional kinematics as a ground-truth measure. The prediction-model accuracy was similar for the regression, inference tree, and random forest models (RMSE: MR = 5.16°, TREE = 4.85°, FRST = 3.65°; MAPE: MR = 0.32°, TREE = 0.45°, FRST = 0.33°), though the regression and random forest models boasted lower maximum precision (13.75° and 14.3°, respectively) than the inference tree (19.02°). The classification performance was above 90% for all models (MR = 90.4%, TREE = 93.9%, and FRST = 94.1%). There was an increased tendency to misclassify mid foot strike patterns in all models, which may be improved with the inclusion of more mid foot steps during model training. Ultimately, wearable pressure insoles in combination with simple machine learning techniques can be used to predict and classify a runner’s foot strike with sufficient accuracy.

Author(s):  
Lakshmi Prayaga ◽  
Krishna Devulapalli ◽  
Chandra Prayaga ◽  
Joe Carloni

In this paper, we report the development of machine learning techniques which can help hospital authorities assess a patients' medical condition and also calculate the probability of readmission of the patient as inpatient, and thus identify patients with higher risks for readmissions. Factor Analysis is performed on patient data to understand the severity of mental health, and Random Forest models are used to determine the probability of a patient becoming an inpatient for the next 30/60/90 days from their last visit to the physician’s office. The Random Forest model fits the data with an overall OOB Error rate of 3.69% and an accuracy of 97.65%. The accuracy on the test data was 96.11%. A web application is also developed to provide a user-friendly interface for physicians and administrators to interact with and obtain relevant information for a given patient and or a group of patients. The web application affords physicians additional inputs to assist in their diagnosis and administrators, a window into anticipating and preparing for future patient needs.


In this paper, we report the development of machine learning techniques which can help hospital authorities assess a patients' medical condition and also calculate the probability of readmission of the patient as inpatient, and thus identify patients with higher risks for readmissions. Factor Analysis is performed on patient data to understand the severity of mental health, and Random Forest models are used to determine the probability of a patient becoming an inpatient for the next 30/60/90 days from their last visit to the physician’s office. The Random Forest model fits the data with an overall OOB Error rate of 3.69% and an accuracy of 97.65%. The accuracy on the test data was 96.11%. A web application is also developed to provide a user-friendly interface for physicians and administrators to interact with and obtain relevant information for a given patient and or a group of patients. The web application affords physicians additional inputs to assist in their diagnosis and administrators, a window into anticipating and preparing for future patient needs.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 109
Author(s):  
Ashima Malik ◽  
Megha Rajam Rao ◽  
Nandini Puppala ◽  
Prathusha Koouri ◽  
Venkata Anil Kumar Thota ◽  
...  

Over the years, rampant wildfires have plagued the state of California, creating economic and environmental loss. In 2018, wildfires cost nearly 800 million dollars in economic loss and claimed more than 100 lives in California. Over 1.6 million acres of land has burned and caused large sums of environmental damage. Although, recently, researchers have introduced machine learning models and algorithms in predicting the wildfire risks, these results focused on special perspectives and were restricted to a limited number of data parameters. In this paper, we have proposed two data-driven machine learning approaches based on random forest models to predict the wildfire risk at areas near Monticello and Winters, California. This study demonstrated how the models were developed and applied with comprehensive data parameters such as powerlines, terrain, and vegetation in different perspectives that improved the spatial and temporal accuracy in predicting the risk of wildfire including fire ignition. The combined model uses the spatial and the temporal parameters as a single combined dataset to train and predict the fire risk, whereas the ensemble model was fed separate parameters that were later stacked to work as a single model. Our experiment shows that the combined model produced better results compared to the ensemble of random forest models on separate spatial data in terms of accuracy. The models were validated with Receiver Operating Characteristic (ROC) curves, learning curves, and evaluation metrics such as: accuracy, confusion matrices, and classification report. The study results showed and achieved cutting-edge accuracy of 92% in predicting the wildfire risks, including ignition by utilizing the regional spatial and temporal data along with standard data parameters in Northern California.


Author(s):  
Xianda Chen ◽  
Yifei Xiao ◽  
Yeming Tang ◽  
Julio Fernandez-Mendoza ◽  
Guohong Cao

Sleep apnea is a sleep disorder in which breathing is briefly and repeatedly interrupted. Polysomnography (PSG) is the standard clinical test for diagnosing sleep apnea. However, it is expensive and time-consuming which requires hospital visits, specialized wearable sensors, professional installations, and long waiting lists. To address this problem, we design a smartwatch-based system called ApneaDetector, which exploits the built-in sensors in smartwatches to detect sleep apnea. Through a clinical study, we identify features of sleep apnea captured by smartwatch, which can be leveraged by machine learning techniques for sleep apnea detection. However, there are many technical challenges such as how to extract various special patterns from the noisy and multi-axis sensing data. To address these challenges, we propose signal denoising and data calibration techniques to process the noisy data while preserving the peaks and troughs which reflect the possible apnea events. We identify the characteristics of sleep apnea such as signal spikes which can be captured by smartwatch, and propose methods to extract proper features to train machine learning models for apnea detection. Through extensive experimental evaluations, we demonstrate that our system can detect apnea events with high precision (0.9674), recall (0.9625), and F1-score (0.9649).


Webology ◽  
2021 ◽  
Vol 18 (Special Issue 01) ◽  
pp. 183-195
Author(s):  
Thingbaijam Lenin ◽  
N. Chandrasekaran

Student’s academic performance is one of the most important parameters for evaluating the standard of any institute. It has become a paramount importance for any institute to identify the student at risk of underperforming or failing or even drop out from the course. Machine Learning techniques may be used to develop a model for predicting student’s performance as early as at the time of admission. The task however is challenging as the educational data required to explore for modelling are usually imbalanced. We explore ensemble machine learning techniques namely bagging algorithm like random forest (rf) and boosting algorithms like adaptive boosting (adaboost), stochastic gradient boosting (gbm), extreme gradient boosting (xgbTree) in an attempt to develop a model for predicting the student’s performance of a private university at Meghalaya using three categories of data namely demographic, prior academic record, personality. The collected data are found to be highly imbalanced and also consists of missing values. We employ k-nearest neighbor (knn) data imputation technique to tackle the missing values. The models are developed on the imputed data with 10 fold cross validation technique and are evaluated using precision, specificity, recall, kappa metrics. As the data are imbalanced, we avoid using accuracy as the metrics of evaluating the model and instead use balanced accuracy and F-score. We compare the ensemble technique with single classifier C4.5. The best result is provided by random forest and adaboost with F-score of 66.67%, balanced accuracy of 75%, and accuracy of 96.94%.


Author(s):  
Ramesh Ponnala ◽  
K. Sai Sowjanya

Prediction of Cardiovascular ailment is an important task inside the vicinity of clinical facts evaluation. Machine learning knowledge of has been proven to be effective in helping in making selections and predicting from the huge amount of facts produced by using the healthcare enterprise. on this paper, we advocate a unique technique that pursuits via finding good sized functions by means of applying ML strategies ensuing in improving the accuracy inside the prediction of heart ailment. The severity of the heart disease is classified primarily based on diverse methods like KNN, choice timber and so on. The prediction version is added with special combos of capabilities and several known classification techniques. We produce a stronger performance level with an accuracy level of a 100% through the prediction version for heart ailment with the Hybrid Random forest area with a linear model (HRFLM).


2021 ◽  
Vol 5 (CHI PLAY) ◽  
pp. 1-29
Author(s):  
Alessandro Canossa ◽  
Dmitry Salimov ◽  
Ahmad Azadvar ◽  
Casper Harteveld ◽  
Georgios Yannakakis

Is it possible to detect toxicity in games just by observing in-game behavior? If so, what are the behavioral factors that will help machine learning to discover the unknown relationship between gameplay and toxic behavior? In this initial study, we examine whether it is possible to predict toxicity in the MOBA gameFor Honor by observing in-game behavior for players that have been labeled as toxic (i.e. players that have been sanctioned by Ubisoft community managers). We test our hypothesis of detecting toxicity through gameplay with a dataset of almost 1,800 sanctioned players, and comparing these sanctioned players with unsanctioned players. Sanctioned players are defined by their toxic action type (offensive behavior vs. unfair advantage) and degree of severity (warned vs. banned). Our findings, based on supervised learning with random forests, suggest that it is not only possible to behaviorally distinguish sanctioned from unsanctioned players based on selected features of gameplay; it is also possible to predict both the sanction severity (warned vs. banned) and the sanction type (offensive behavior vs. unfair advantage). In particular, all random forest models predict toxicity, its severity, and type, with an accuracy of at least 82%, on average, on unseen players. This research shows that observing in-game behavior can support the work of community managers in moderating and possibly containing the burden of toxic behavior.


2021 ◽  
Author(s):  
Enzo Losi ◽  
Mauro Venturini ◽  
Lucrezia Manservigi ◽  
Giuseppe Fabio Ceschini ◽  
Giovanni Bechini ◽  
...  

Abstract A gas turbine trip is an unplanned shutdown, of which the most relevant consequences are business interruption and a reduction of equipment remaining useful life. Thus, understanding the underlying causes of gas turbine trip would allow predicting its occurrence in order to maximize gas turbine profitability and improve its availability. In the ever competitive Oil & Gas sector, data mining and machine learning are increasingly being employed to support a deeper insight and improved operation of gas turbines. Among the various machine learning tools, Random Forests are an ensemble learning method consisting of an aggregation of decision tree classifiers. This paper presents a novel methodology aimed at exploiting information embedded in the data and develops Random Forest models, aimed at predicting gas turbine trip based on information gathered during a timeframe of historical data acquired from multiple sensors. The novel approach exploits time series segmentation to increase the amount of training data, thus reducing overfitting. First, data are transformed according to a feature engineering methodology developed in a separate work by the same authors. Then, Random Forest models are trained and tested on unseen observations to demonstrate the benefits of the novel approach. The superiority of the novel approach is proved by considering two real-word case-studies, involving filed data taken during three years of operation of two fleets of Siemens gas turbines located in different regions. The novel methodology allows values of Precision, Recall and Accuracy in the range 75–85 %, thus demonstrating the industrial feasibility of the predictive methodology.


RSC Advances ◽  
2014 ◽  
Vol 4 (106) ◽  
pp. 61624-61630 ◽  
Author(s):  
N. S. Hari Narayana Moorthy ◽  
Silvia A. Martins ◽  
Sergio F. Sousa ◽  
Maria J. Ramos ◽  
Pedro A. Fernandes

Classification models to predict the solvation free energies of organic molecules were developed using decision tree, random forest and support vector machine approaches and with MACCS fingerprints, MOE and PaDEL descriptors.


Sign in / Sign up

Export Citation Format

Share Document