scholarly journals An Advanced Statistical Approach Using Weighted Linear Regression in Electroanalytical Method Development for Epinephrine, Uric Acid and Ascorbic Acid Determination

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7056
Author(s):  
David Majer ◽  
Tinkara Mastnak ◽  
Matjaž Finšgar

In this study, the use of weighted linear regression in the development of electrochemical methods for the determination of epinephrine (EP), ascorbic acid (AA), and uric acid (UA) is presented. The measurements were performed using a glassy carbon electrode and square-wave voltammetry (SWV). All electroanalytical methods were validated by determination of the limit of detection, limit of quantification, linear concentration range, accuracy, and precision. The normal distribution of all data sets was checked using the quantile-quantile plot and Kolmogorov-Smirnov statistical tests. The heteroscedasticity of the data was tested using Hartley’s test, Bartlett’s test, Cochran’s C test, and the analysis of residuals. The heteroscedastic behavior was observed with all analytes, justifying the use of weighted linear regression. Six different weighting factors were tested, and the best weighted model was determined using relative percentage error. Such statistical approach improved the regression models by giving greater weight on the values with the smallest error and vice versa. Consequently, accuracy of the analytical results (especially in the lower concentration range) was improved. All methods were successfully used for the determination of these analytes in real samples: EP in an epinephrine auto-injector, AA in a dietary supplement, and UA in human urine. The accuracy and precision of real sample analysis using best weighted model gave satisfactory results with recoveries between 95.21–113.23% and relative standard deviations between 0.85–7.98%. The SWV measurement takes about 40 s, which makes the presented methods for the determination of EP, AA, and UA a promising alternative to chromatographic techniques in terms of speed, analysis, and equipment costs, as the analysis is performed without organic solvents.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Rameshwar Dass ◽  
Jitander K. Kapoor ◽  
Sunita Gambhir

An extractive spectrophotometric method has been developed for microdetermination of molybdenum. At room temperature Mo(VI) was reduced to Mo(V) in 2 M H2SO4using ascorbic acid as a reductant. The Mo(V) formed a yellow-coloured (1 : 2) complex with 6-chloro-3-hydroxy-2-(3′-hydroxyphenyl)-4-oxo-4H-1-benzopyran (CHHB). The complex was quantitatively extracted into toluene and absorbed maximum atλmax404 nm. Beer’s law was obeyed over the concentration range of 2.31 μg Mo ml−1with a molar absorptivity and Sandell's sensitivity of5.62×104 L mol−1 cm−1and 0.0016 μg Mo cm−2, respectively. The relative standard deviation was 0.0025 (in absorbance units) for 10 replicate determinations of 1 μg Mo ml−1. The method was free from the interference of large number of analytically important elements. Molybdenum has been determined satisfactorily in different technical, synthetic, and environmental samples with improved accuracy and precision.


1978 ◽  
Vol 24 (12) ◽  
pp. 2161-2165 ◽  
Author(s):  
F Meiattini ◽  
L Prencipe ◽  
F Bardelli ◽  
G Giannini ◽  
P Tarli

Abstract A single reagent, containing cholesterol oxidase, cholesterol esterase, peroxidase, 4-hydroxybenzoate, and 4-aminophenazone, is used in determining serum cholesterol. Analysis time is 15 min, and the standard curve is linear to 6.0 g/liter. Analytical recovery of cholesterol was 100.1 +/- 0.4%. Within-run precision (CV) was less than or equal to 1.4 1.4%, between-run less than or equal to 4.8%. Comparison with results by a Liebermann Burchard method [Clin. Chim. Acta 5, 637 (1960)] gave a linear regression of y = 1.08x--0.05, with a correlation coefficient (r) of 0.985. Comparison with the Roeschlau enzymic method [J. Clin. Chem. Clin. Biochem, 12, 226 (1974)] gave y = 1.02x + 0.01 (r = 0.958). Comparison with the enzymic method of Allain et al. [Clin. Chem. 20, 470 (1974)] gave y = 1.01x--0.00 (r = 0.995). The following substances do not interfere up to the indicated concentrations (mg/liter): hemoglobin (5000), bilirubin (100), reduced glutathione (150), l-cysteine (400), urea (3000), creatinine (200), uric acid (200), d-glucose (10000), L-ascorbic acid (50), acetylsalicylic acid (500), L-DOPA (10), ergothioneine (1000), 2,5-dihydroxybenzoic acid (20), and 3,4-dihydroxybenzoic acid (10). Stored in an amber-colored bottle, the working reagent is stable for three months at 2--8 degrees C and for three weeks at 25 degrees C.


2017 ◽  
Vol 799 ◽  
pp. 459-467 ◽  
Author(s):  
Qing Zhu ◽  
Jing Bao ◽  
Danqun Huo ◽  
Mei Yang ◽  
Huixiang Wu ◽  
...  

2013 ◽  
Vol 6 (1) ◽  
pp. 133-141 ◽  
Author(s):  
S. Binte Amir ◽  
M. A. Hossain ◽  
M. A. Mazid

The present study was undertaken to develop and validate a simple, sensitive, accurate, precise and reproducible UV spectrophotometric method for cefuroxime axetil using methanol as solvent. In this method the simple UV spectrum of cefuroxime axetil in methanol was obtained which exhibits absorption maxima (?max) at 278 nm. The quantitative determination of the drug was carried out at 278 nm and Beer’s law was obeyed in the range of (0.80-3.60) µg/ml. The proposed method was applied to pharmaceutical formulation and percent amount of drug estimated (95.6% and 96%) was found in good agreement with the label claim. The developed method was successfully validated with respect to linearity, specificity, accuracy and precision. The method was shown linear in the mentioned concentrations having line equation y = 0.05x + 0.048 with correlation coefficient of 0.995. The recovery values for cefuroxime axetil ranged from 99.85-100.05. The relative standard deviation of six replicates of assay was less than 2%. The percent relative standard deviations of inter-day precision ranged between 1.45-1.92% and intra-day precision of cefuroxime axetil was 0.96-1.51%. Hence, proposed method was precise, accurate and cost effective.  Keywords: UV-Vis spectrophotometer; Method validation; Cefuroxime axetil; Recovery studies.  © 2013 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.   doi: http://dx.doi.org/10.3329/jsr.v6i1.14879 J. Sci. Res. 6 (1), 133-141 (2013)  


1994 ◽  
Vol 27 (11) ◽  
pp. 2141-2151 ◽  
Author(s):  
Suzanne K. Lunsford ◽  
A. Galal ◽  
N. Akmal ◽  
Y. L. Ma ◽  
H. Zimmer ◽  
...  

2003 ◽  
Vol 68 (8-9) ◽  
pp. 691-698 ◽  
Author(s):  
Milena Jelikic-Stankov ◽  
Predrag Djurdjevic ◽  
Dejan Stankov

In this work a new enzymatic method for the determination of uric acid in human serum has been developed. The method is based on the oxidative coupling reaction between the N-methyl-N-(4-aminophenyl)-3-methoxyaniline (NCP) reagent and the hydrogen ? donor reagent N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3-methylaniline (TOOS), in the system involving three enzymes: uricase, peroxidase and ascorbate oxidase. Using this method uric acid could be determined in concentrations up to 1.428 mmol/L, with a relative standard deviation of up to 1.8 %. The effect of the medium pH and the NCP concentration on the linearity of the chromogen absorbance versus the uric acid concentration curve was investigated. The influence of the uricase activity on the maximum rate of uric acid oxidation was also examined. The use of the NCP reagent demonstrated a more precise and more sensitive determination of the uric acid compared to the determination with 4-aminoantipyrine (4-AA) as the coupling regent. The sensitivity of the method determined from the calibration curve was 0.71 absorbance units per mmol/L of uric acid; the limit of detection was LOD = 0.0035 mmol/L and the limit of quantification was LOQ = 0.015 mmol/L of uric acid.


2021 ◽  
Vol 12 (2) ◽  
pp. 168-178
Author(s):  
Mohamed Rizk ◽  
Ali Kamal Attia ◽  
Heba Yosry Mohamed ◽  
Mona Elshahed

A sensitive, accurate, and precise liquid chromatographic method has been developed and validated for the determination of Linagliptin (LNG) and Empagliflozin (EMP) in their combined tablets. Chromatographic separation was carried out on ODS-3 Inertsil® C18 column (150×4.6 mm, 5 µm). The mobile phase A (consisting of 0.30% Triethyl amine buffer (TEA) at pH = 4.5, adjusted using ortho-phosphoric acid); the mobile phase B (consisting of acetonitrile) was pumped through the column whose temperature was maintained at 40 °C, with a flow rate 1.7 mL/min, using gradient elution from 0-3 min A:B (75:25, v:v), then from 3-6 min the ratio changed to be A:B (60:40, v:v). Fluorescence detection (FLD) was performed at 410 nm after excitation at 239 nm. Acceptable linearity, accuracy and precision values of the proposed method were found over the concentration ranges of 0.5-15 µg/mL for LNG and 1.0-30 µg/mL for EMP with correlation coefficients of 0.9997 and 0.9998 in the case of LNG and EMP, respectively. The recoveries and relative standard deviations percentages were found in the following ranges: 98.56-101.85 and 0.53-1.52% for LNG and 98.00-101.95 and 0.31-1.05% for EMP. The detection and quantification limits were 0.15 and 0.45 µg/mL for LNG and 0.22 and 0.67 µg/mL for EMP. The optimized method was validated and proved to be specific, robust, accurate and reliable for the determination of the drugs in pure form or in their combined pharmaceutical preparations. No significant difference was found regarding accuracy and precision upon statistical comparison between the obtained results of the proposed method and those of the reported method. Furthermore, the proposed method is proved to be a stability-indicating assay after exposure of the studied drugs to variable forced degradation parameters, such as acidic, alkaline and oxidative conditions, according to the recommendations of the International Conference on Harmonization guidelines. The simplicity and selectivity of the proposed method allows its use in quality control laboratories.


Sign in / Sign up

Export Citation Format

Share Document