scholarly journals Quantitative Study on the Impact of Energy Consumption Based Dynamic Selfishness in MANETs

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 716
Author(s):  
Axida Shan ◽  
Xiumei Fan ◽  
Celimuge Wu ◽  
Xinghui Zhang ◽  
Shujia Fan

Cooperative communication and resource limitation are two main characteristics of mobile ad hoc networks (MANETs). On one hand, communication among the nodes in MANETs highly depends on the cooperation among nodes because of the limited transmission range of the nodes, and multi-hop communications are needed in most cases. On the other hand, every node in MANETs has stringent resource constraints on computations, communications, memory, and energy. These two characteristics lead to the existence of selfish nodes in MANETs, which affects the network performance in various aspects. In this paper, we quantitatively investigate the impacts of node selfishness caused by energy depletion in MANETs in terms of packet loss rate, round-trip delay, and throughput. We conducted extensive measurements on a proper simulation platform incorporating an OMNeT++ and INET Framework. Our experimental results quantitatively indicate the impact of node selfishness on the network performance in MANETs. The results also imply that it is important to evaluate the impact of node selfishness by jointly considering selfish nodes’ mobility models, densities, proportions, and combinations.

Author(s):  
D. Rajalakshmi ◽  
Meena K.

A MANET (mobile ad hoc network) is a self-organized wireless network. This network is more vulnerable to security failure due to dynamic topology, infrastructure-less environment, and energy consumption. Based on this security issue, routing in MANET is very difficult in real time. In these kinds of networks, the mobility and resource constraints could lead to divide the networks and minimize the performance of the entire network. In real time it is not possible because some selfish nodes interacts with other nodes partially or may not share the data entirely. These kind of malicious or selfish nodes degrade the network performance. In this chapter, the authors proposed and implemented the effect of malicious activities in a MANETs using self-centered friendship tree routing. It's a novel replica model motivated by the social relationship. Using this technique, it detects the malicious nodes and prevents hacking issues in routing protocol in future routes.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 185
Author(s):  
Muhammad Fayaz ◽  
Gulzar Mehmood ◽  
Ajab Khan ◽  
Sohail Abbas ◽  
Muhammad Fayaz ◽  
...  

A mobile ad hoc network (MANET) is a group of nodes constituting a network of mobile nodes without predefined and pre-established architecture where mobile nodes can communicate without any dedicated access points or base stations. In MANETs, a node may act as a host as well as a router. Nodes in the network can send and receive packets through intermediate nodes. However, the existence of malicious and selfish nodes in MANETs severely degrades network performance. The identification of such nodes in the network and their isolation from the network is a challenging problem. Therefore, in this paper, a simple reputation-based scheme is proposed which uses the consumption and contribution information for selfish node detection and cooperation enforcement. Nodes failing to cooperate are detached from the network to save resources of other nodes with good reputation. The simulation results show that our proposed scheme outperforms the benchmark scheme in terms of NRL (normalized routing load), PDF (packet delivery fraction), and packet drop in the presence of malicious and selfish attacks. Furthermore, our scheme identifies the selfish nodes quickly and accurately as compared to the benchmark scheme.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1635
Author(s):  
Neeraj Chugh ◽  
Geetam Singh Tomar ◽  
Robin Singh Bhadoria ◽  
Neetesh Saxena

To sustain the security services in a Mobile Ad Hoc Networks (MANET), applications in terms of confidentially, authentication, integrity, authorization, key management, and abnormal behavior detection/anomaly detection are significant. The implementation of a sophisticated security mechanism requires a large number of network resources that degrade network performance. In addition, routing protocols designed for MANETs should be energy efficient in order to maximize network performance. In line with this view, this work proposes a new hybrid method called the data-driven zone-based routing protocol (DD-ZRP) for resource-constrained MANETs that incorporate anomaly detection schemes for security and energy awareness using Network Simulator 3. Most of the existing schemes use constant threshold values, which leads to false positive issues in the network. DD-ZRP uses a dynamic threshold to detect anomalies in MANETs. The simulation results show an improved detection ratio and performance for DD-ZRP over existing schemes; the method is substantially better than the prevailing protocols with respect to anomaly detection for security enhancement, energy efficiency, and optimization of available resources.


2012 ◽  
Vol 433-440 ◽  
pp. 3944-3948
Author(s):  
Prasenjit Choudhury ◽  
Anita Pal ◽  
Anjali Gupchup ◽  
Krati Budholiya ◽  
Alokparna Banerjee

Ad-hoc networks are attractive, since they can provide a high level of connectivity without the need of a fixed infrastructure. Nodes that are not within the same transmission range communicate through multi-hops, where intermediate nodes act as relays. Mutual cooperation of all the participating nodes is necessary for proper operation of MANET. However, nodes in MANET being battery-constrained, they tend to behave selfishly while forwarding packets. In this paper, we have investigated the security of MANET AODV routing protocol by identifying the impact of selfish nodes on it. It was observed that due to the presence of selfish nodes, packet loss in the network increases and the performance of MANET degrades significantly. Finally a game theoretic approach is used to mitigate the selfishness attack. All the nodes in MANET should cooperate among themselves to thwart the selfish behavior of attacker nodes.


2021 ◽  
Author(s):  
Altaf Hussain ◽  
Muhammad Rafiq Khan

Abstract Mobile Ad-hoc Network (MANET) is the most emerging and fast expanding technology since the last two decades. One of the major issue and challenging area in MANET is the process of routing due to dynamic topologies and high mobility of mobile nodes. The exchange of information from source to a destination is known as the process of routing. Spectacular amount of attention has been paid by researchers to reliable routing in ad-hoc networks. Efficiency and accuracy of a protocol depends on many parameters in these networks. In addition to other parameters node velocity and propagation models are among them. Calculating signal strength at receiver is the responsibility of a propagation model while mobility of nodes is responsible for topology of the network. A huge amount of loss in performance is occurred due to variation of signal strength at receiver and obstacles between transmissions. Simulation tools are developed to analyze the weakness and strength of protocols along with different parameters that may impact the performance. The choice of a propagation models have an abundant effect on performance on routing protocols in MANET. In this research, it has been analyzed to check the impact of different propagation models on the performance of Optimized Link State Routing (OLSR) in Sparse and Dense scenarios in MANET. The simulation has been carried out in NS-2 by using performance metrics as average Throughput, average packet drop and average latency. The results predicted that propagation models and mobility has a strong impact on the performance of OLSR in considered scenarios.


Author(s):  
Rakesh Kumar Singh

Mobile Ad Hoc Network (MANET) is a collection of communication devices or nodes that wish to communicate without any fixed infrastructure. The nodes in MANET themselves are responsible for dynamically discovering other nodes to communicate. A number of challenges like open peer-to-peer network architecture, stringent resource constraints, shared wireless medium, dynamic network topology etc. are posed in MANET. In this research, we identify the existent security threats an ad hoc network faces, the security services required to be achieved and the countermeasures for attacks in each layer. To accomplish our goal, we have done literature survey in gathering information related to various types of attacks and solutions, as well as we have made comparative study to address the threats in different layers. Finally, we have identified the challenges and proposed solutions to overcome them. There is no general algorithm that suits well against the most commonly known attacks such as wormhole, rushing attack, etc.


Author(s):  
Hussein Al-Bahadili ◽  
Ali Maqousi ◽  
Reyadh S. Naoum

The location-aided routing scheme 1 (LAR-1) and probabilistic algorithms are combined together into a new algorithm for route discovery in mobile ad hoc networks (MANETs) called LAR-1P. Simulation results demonstrated that the LAR-1P algorithm reduces the number of retransmissions as compared to LAR-1 without sacrificing network reachability. Furthermore, on a sub-network (zone) scale, the algorithm provides an excellent performance in high-density zones, while in low-density zones; it preserves the performance of LAR-1. This paper provides a detailed analysis of the performance of the LAR-1P algorithm through various simulations, where the actual numerical values for the number of retransmissions and reachability in high- and low-density zones were computed to demonstrate the effectiveness and significance of the algorithm and how it provides better performance than LAR-1 in high-density zones. In addition, the effect of the total number of nodes on the average network performance is also investigated.


2011 ◽  
Vol 219-220 ◽  
pp. 351-357 ◽  
Author(s):  
Jin Song Gui ◽  
Zhi Gang Chen ◽  
Xiao Heng Deng

In vehicular ad hoc networks, uncooperative behaviors will impact the reliability of comfort applications, as well as drivers’ decisions, and even invoke serious traffic accidents. In this paper, we propose a novel game incentive scheme to stimulate cooperation among vehicle nodes, consider selfish nodes’ expectations to future payoff and their long-term desires for profit, and show analytically the three incentive-compatible conditions under which selfish nodes will be deterred from cheating by the subsequent punishments. We also discuss the impact on selfish nodes’ behavior, which is caused by their willingness for future collaboration, the parameter values of punishment mechanism and the variation of network load. Simulation results show that, the increase of network load and the deterioration of node’s future profit expectation will motivate nodes toward self-interested action, but our scheme can neutralize this tendency by the careful configuration of punishment parameters, and have favorable incentive effect.


Sign in / Sign up

Export Citation Format

Share Document