An Efficient Selfishness Control Mechanism for Mobile Ad hoc Networks

Author(s):  
D. Rajalakshmi ◽  
Meena K.

A MANET (mobile ad hoc network) is a self-organized wireless network. This network is more vulnerable to security failure due to dynamic topology, infrastructure-less environment, and energy consumption. Based on this security issue, routing in MANET is very difficult in real time. In these kinds of networks, the mobility and resource constraints could lead to divide the networks and minimize the performance of the entire network. In real time it is not possible because some selfish nodes interacts with other nodes partially or may not share the data entirely. These kind of malicious or selfish nodes degrade the network performance. In this chapter, the authors proposed and implemented the effect of malicious activities in a MANETs using self-centered friendship tree routing. It's a novel replica model motivated by the social relationship. Using this technique, it detects the malicious nodes and prevents hacking issues in routing protocol in future routes.

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 716
Author(s):  
Axida Shan ◽  
Xiumei Fan ◽  
Celimuge Wu ◽  
Xinghui Zhang ◽  
Shujia Fan

Cooperative communication and resource limitation are two main characteristics of mobile ad hoc networks (MANETs). On one hand, communication among the nodes in MANETs highly depends on the cooperation among nodes because of the limited transmission range of the nodes, and multi-hop communications are needed in most cases. On the other hand, every node in MANETs has stringent resource constraints on computations, communications, memory, and energy. These two characteristics lead to the existence of selfish nodes in MANETs, which affects the network performance in various aspects. In this paper, we quantitatively investigate the impacts of node selfishness caused by energy depletion in MANETs in terms of packet loss rate, round-trip delay, and throughput. We conducted extensive measurements on a proper simulation platform incorporating an OMNeT++ and INET Framework. Our experimental results quantitatively indicate the impact of node selfishness on the network performance in MANETs. The results also imply that it is important to evaluate the impact of node selfishness by jointly considering selfish nodes’ mobility models, densities, proportions, and combinations.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 185
Author(s):  
Muhammad Fayaz ◽  
Gulzar Mehmood ◽  
Ajab Khan ◽  
Sohail Abbas ◽  
Muhammad Fayaz ◽  
...  

A mobile ad hoc network (MANET) is a group of nodes constituting a network of mobile nodes without predefined and pre-established architecture where mobile nodes can communicate without any dedicated access points or base stations. In MANETs, a node may act as a host as well as a router. Nodes in the network can send and receive packets through intermediate nodes. However, the existence of malicious and selfish nodes in MANETs severely degrades network performance. The identification of such nodes in the network and their isolation from the network is a challenging problem. Therefore, in this paper, a simple reputation-based scheme is proposed which uses the consumption and contribution information for selfish node detection and cooperation enforcement. Nodes failing to cooperate are detached from the network to save resources of other nodes with good reputation. The simulation results show that our proposed scheme outperforms the benchmark scheme in terms of NRL (normalized routing load), PDF (packet delivery fraction), and packet drop in the presence of malicious and selfish attacks. Furthermore, our scheme identifies the selfish nodes quickly and accurately as compared to the benchmark scheme.


Author(s):  
Rakesh Kumar Singh

Mobile Ad Hoc Network (MANET) is a collection of communication devices or nodes that wish to communicate without any fixed infrastructure. The nodes in MANET themselves are responsible for dynamically discovering other nodes to communicate. A number of challenges like open peer-to-peer network architecture, stringent resource constraints, shared wireless medium, dynamic network topology etc. are posed in MANET. In this research, we identify the existent security threats an ad hoc network faces, the security services required to be achieved and the countermeasures for attacks in each layer. To accomplish our goal, we have done literature survey in gathering information related to various types of attacks and solutions, as well as we have made comparative study to address the threats in different layers. Finally, we have identified the challenges and proposed solutions to overcome them. There is no general algorithm that suits well against the most commonly known attacks such as wormhole, rushing attack, etc.


Author(s):  
Reshmi. T.R ◽  
Shymala L ◽  
Sandhya. M.K

Mobile ad-hoc networks (MANETs) are composed of mobile nodes connected by wireless links without using any pre-existent infrastructure. Hence the assigning of unique IP address to the incoming node becomes difficult. There are various dynamic auto configuration protocols available to assign IP address to the incoming nodes including grid based protocol which assigns IP address with less delay and low protocol overhead. Such protocols get affected by presence of either selfish nodes or malicious nodes. Moreover there is no centralized approach to defend against these threats like in wired network such as firewall, intrusion detection system, proxy etc. The selfish nodes are the nodes which receive packet destined to it and drop packet destined to other nodes in order to save its energy and resources. This behavior of nodes affects normal functioning of auto configuration protocol. Many algorithms are available to isolate selfish nodes but they do not deal with presence of false alarm and protocol overhead. And also there are certain algorithms which use complex formulae and tedious mathematical calculations. The proposed algorithm in this paper helps to overcome the attack of selfish nodes effect in an efficient and scalable address auto configuration protocol that automatically configures a network by assigning unique IP addresses to all nodes with a very low protocol overhead, minimal address acquisition delay and computational overhead.


2017 ◽  
Author(s):  
Neha Mahajan

In mobile ad-hoc networks (MANETs), the primary need to achieve effective network communication among nodes is that the nodes should cooperate with each other. While in the presence of malicious nodes, this need might lead to the severe security concerns. Preventing MANET from such nodes has become an important and challenging security issue since most of the routing protocols are vulnerable to various types of attacks. In this paper we reviewed many research works which have focused on using either proactive or reactive defense mechanisms, intrusion detection systems, routing protocols to detect and prevent resource consumption and byzantine attacks.


Big Data ◽  
2016 ◽  
pp. 2006-2027
Author(s):  
Rakesh Kumar Singh

Mobile Ad Hoc Network (MANET) is a collection of communication devices or nodes that wish to communicate without any fixed infrastructure. The nodes in MANET themselves are responsible for dynamically discovering other nodes to communicate. A number of challenges like open peer-to-peer network architecture, stringent resource constraints, shared wireless medium, dynamic network topology etc. are posed in MANET. In this research, we identify the existent security threats an ad hoc network faces, the security services required to be achieved and the countermeasures for attacks in each layer. To accomplish our goal, we have done literature survey in gathering information related to various types of attacks and solutions, as well as we have made comparative study to address the threats in different layers. Finally, we have identified the challenges and proposed solutions to overcome them. There is no general algorithm that suits well against the most commonly known attacks such as wormhole, rushing attack, etc.


2017 ◽  
Vol 10 (1) ◽  
pp. 94-102 ◽  
Author(s):  
Ashish Jain ◽  
Vrinda Tokekar

Mobile ad hoc network (MANET) possess self-configuration, self-control and self-maintenance capabilities. Nodes of MANET are autonomous routers. Hence, they are vulnerable to security attacks. Collaborative attacks such as black hole and wormhole in MANET are difficult to be detected and prevented. Trust based routing decision is an effective approach for security enhancement in MANET. In this study, trust computing using fuzzy based max-product composition scheme is applied to compute aggregated trust values to determine malicious nodes and thereby safe route in MANETs. The results show performance improvement of proposed protocol over AODV protocol. Network metrics are analysed under different mobility conditions and different positions of black hole nodes.


Author(s):  
A. S. M. Muntaheen ◽  
Milton Chandro Bhowmick ◽  
Md. Raqibul Hasan Rumman ◽  
Nayeem Al-Tamzid Bhuiyan ◽  
Md. Taslim Mahmud Bhuyain ◽  
...  

A self-organized wireless communication short-lived network containing collection of mobile nodes is mobile ad hoc network (MANET). The mobile nodes communicate with each other by wireless radio links without the use of any pre-established fixed communication network infrastructure or centralized administration, such as base stations or access points, and with no human intervention. In addition, this network has potential applications in conference, disaster relief, and battlefield scenario, and have received important attention in current years. There is some security concern that increases fear of attacks on the mobile ad-hoc network. The mobility of the NODE in a MANET poses many security problems and vulnerable to different types of security attacks than conventional wired and wireless networks. The causes of these issues are due to their open medium, dynamic network topology, absence of central administration, distributed cooperation, constrained capability, and lack of clear line of defense. Without proper security, mobile hosts are easily captured, compromised, and attacked by malicious nodes. Malicious nodes behavior may deliberately disrupt the network so that the whole network will be suffering from packet losses. One of the major concerns in mobile ad-hoc networks is a traffic DoS attack in which the traffic is choked by the malicious node which denied network services for the user. Mobile ad-hoc networks must have a safe path for transmission and correspondence which is a serious testing and indispensable issue. So as to provide secure communication and transmission, the scientist worked explicitly on the security issues in versatile impromptu organizations and many secure directing conventions and security measures within the networks were proposed. The goal of the work is to study DoS attacks and how it can be detected in the network. Existing methodologies for finding a malicious node that causes traffic jamming is based on node’s retains value. The proposed approach finds a malicious node using reliability value determined by the broadcast reliability packet (RL Packet). In this approach at the initial level, every node has zero reliability value, specific time slice, and transmission starts with a packet termed as reliability packet, node who responded properly in specific time, increases its reliability value and those nodes who do not respond in a specific time decreases their reliability value and if it goes to less than zero then announced that it’s a malicious node. Reliability approach makes service availability and retransmission time.


Mobile Ad hoc network (MANETs) is a selforganizing multi-hop wireless network with dynamic topologies. Due to the absence of Control Authority in MANET, the network seems to be vulnerable that can be easily destroyed by the entry of malicious nodes. The presence of malicious nodes can destroy the data transmission of the network. So, finding and removing the malicious nodes is one of the critical issues in the MANET. With the help of the proposed Coherence Key Based Node Authentication for Routing (CKR) Algorithm, each and every mobile node are authenticated while updating the routing table by using the authentication key value that is generated with the help of random number with the secret key. Only the authenticated nodes (non-Malicious Nodes) are updated in the routing table and the remaining nodes which are not authenticated (malicious nodes) will be eliminated from the routing table. So that, the malicious node will not participated and could not destroy the data transmission. Thus, it makes this Multi-hop network as more trustful network.


2018 ◽  
Vol 7 (2.20) ◽  
pp. 22
Author(s):  
A Aranganathan ◽  
C D. Suriyakala

Intrusion detection is one of challenging issues in wireless networks. The inherently vulnerable characteristics of wireless mobile ad hoc networks make them susceptible to attacks in-spite of some security measures, and it may be too late before any counter action can take effect. As such, there is a need to complement security mechanisms with efficient intrusion detection and response systems. This paper proposes an agent-based model to address the aspect of intrusion detection in cluster based Mobile ad hoc network environment. The model comprises of mobile agents, which are used to detect intrusions, respond to intrusions, mainly preventing the routing attacks while securing them and distributing selected and aggregated intrusion information to all other nodes in the network in an intelligent manner to compensate the attack. The model is simulated to test its operation effectiveness by considering various performance parameters such as, packet delivery ratio, communication overhead, throughput. It implements a secure detection and prevention technique that contains the Blowfish algorithm which is a symmetric encryption and decryption algorithm having a secure standard till date against attacks to make the network transmission secure while monitoring malicious nodes and preventing them from compromising the integrity of the network. Agent based approach facilitates flexible and adaptable security services. Also, it supports component based software engineering components such as maintainability, reachability, reusability, adaptability, and flexibility. 


Sign in / Sign up

Export Citation Format

Share Document