scholarly journals High-Precision Lensless Microscope on a Chip Based on In-Line Holographic Imaging

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 720
Author(s):  
Xiwei Huang ◽  
Yangbo Li ◽  
Xuefeng Xu ◽  
Renjie Wang ◽  
Jiangfan Yao ◽  
...  

The lensless on-chip microscope is an emerging technology in the recent decade that can realize the imaging and analysis of biological samples with a wide field-of-view without huge optical devices and any lenses. Because of its small size, low cost, and being easy to hold and operate, it can be used as an alternative tool for large microscopes in resource-poor or remote areas, which is of great significance for the diagnosis, treatment, and prevention of diseases. To improve the low-resolution characteristics of the existing lensless shadow imaging systems and to meet the high-resolution needs of point-of-care testing, here, we propose a high-precision on-chip microscope based on in-line holographic technology. We demonstrated the ability of the iterative phase recovery algorithm to recover sample information and evaluated it with image quality evaluation algorithms with or without reference. The results showed that the resolution of the holographic image after iterative phase recovery is 1.41 times that of traditional shadow imaging. Moreover, we used machine learning tools to identify and count the mixed samples of mouse ascites tumor cells and micro-particles that were iterative phase recovered. The results showed that the on-chip cell counter had high-precision counting characteristics as compared with manual counting of the microscope reference image. Therefore, the proposed high-precision lensless microscope on a chip based on in-line holographic imaging provides one promising solution for future point-of-care testing (POCT).

2008 ◽  
Vol 94 (2) ◽  
pp. 216-225 ◽  
Author(s):  
Marco Bianchessi ◽  
Sarah Burgarella ◽  
Marco Cereda

The development of new powerful applications and the improvement in fabrication techniques are promising an explosive growth in lab-on-chip use in the upcoming future. As the demand reaches significant levels, the semiconductor industry may enter in the field, bringing its capability to produce complex devices in large volumes, high quality and low cost. The lab-on-chip concept, when applied to medicine, leads to the point-of-care concept, where simple, compact and cheap instruments allow diagnostic assays to be performed quickly by untrained personnel directly at the patient's side. In this paper, some practical and economical considerations are made to support the advantages of point-of-care testing. A series of promising technologies developed by STMicroelectronics on lab-on-chips is also presented, mature enough to enter in the common medical practice. The possible use of these techniques for cancer research, diagnosis and treatment are illustrated together with the benefits offered by their implementation in point-of-care testing.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1917 ◽  
Author(s):  
Shane O’Sullivan ◽  
Zulfiqur Ali ◽  
Xiaoyi Jiang ◽  
Reza Abdolvand ◽  
M Selim Ünlü ◽  
...  

We review some emerging trends in transduction, connectivity and data analytics for Point-of-Care Testing (POCT) of infectious and non-communicable diseases. The patient need for POCT is described along with developments in portable diagnostics, specifically in respect of Lab-on-chip and microfluidic systems. We describe some novel electrochemical and photonic systems and the use of mobile phones in terms of hardware components and device connectivity for POCT. Developments in data analytics that are applicable for POCT are described with an overview of data structures and recent AI/Machine learning trends. The most important methodologies of machine learning, including deep learning methods, are summarised. The potential value of trends within POCT systems for clinical diagnostics within Lower Middle Income Countries (LMICs) and the Least Developed Countries (LDCs) are highlighted.


Lab on a Chip ◽  
2018 ◽  
Vol 18 (6) ◽  
pp. 915-922 ◽  
Author(s):  
Yonghun Lee ◽  
Dong-Min Kim ◽  
Zhenglin Li ◽  
Dong-Eun Kim ◽  
Sung-Jin Kim

This paper presents pulsatile blood-plasma filtration and on-chip amplification of cell-free DNA, which obviates the need for any dynamic external controllers for point-of-care testing.


Lab on a Chip ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 1797-1807 ◽  
Author(s):  
Chao Liang ◽  
Yuanchang Liu ◽  
Aiying Niu ◽  
Chong Liu ◽  
Jingmin Li ◽  
...  

We present a smartphone-app platform for point-of-care testing of cTnI, which features the self-aligned on-chip focusing (SOF) lenses for enhancing the fluorescence intensity.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Arthur Zargaryan ◽  
Nathalie Farhoudi ◽  
George Haworth ◽  
Julian F. Ashby ◽  
Sam H. Au

Abstract 3D printed and paper-based microfluidics are promising formats for applications that require portable miniaturized fluid handling such as point-of-care testing. These two formats deployed in isolation, however, have inherent limitations that hamper their capabilities and versatility. Here, we present the convergence of 3D printed and paper formats into hybrid devices that overcome many of these limitations, while capitalizing on their respective strengths. Hybrid channels were fabricated with no specialized equipment except a commercial 3D printer. Finger-operated reservoirs and valves capable of fully-reversible dispensation and actuation were designed for intuitive operation without equipment or training. Components were then integrated into a versatile multicomponent device capable of dynamic fluid pathing. These results are an early demonstration of how 3D printed and paper microfluidics can be hybridized into versatile lab-on-chip devices.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Suprava Patel ◽  
Rachita Nanda ◽  
Sibasish Sahoo ◽  
Eli Mohapatra

Immense potentiality of biosensors in medical diagnostics has driven scientists in evolution of biosensor technologies and innovating newer tools in time. The cornerstone of the popularity of biosensors in sensing wide range of biomolecules in medical diagnostics is due to their simplicity in operation, higher sensitivity, ability to perform multiplex analysis, and capability to be integrated with different function by the same chip. There remains a huge challenge to meet the demands of performance and yield to its simplicity and affordability. Ultimate goal stands for providing point-of-care testing facility to the remote areas worldwide, particularly the developing countries. It entails continuous development in technology towards multiplexing ability, fabrication, and miniaturization of biosensor devices so that they can provide lab-on-chip-analysis systems to the community.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Smriti Sharma ◽  
Vinayak Bhatia

The use of magnetic nanoparticles (MNPs) in microfluidics based diagnostics is a classic case of micro-, nano- and bio-technology coming together to design extremely controllable, reproducible, and scalable nano and micro ‘ on-chip bio sensing systems.’ In this review, applications of MNPs in microfluidics ranging from molecular diagnostics and immunodiagnostics to clinical uses have been examined. In addition, microfluidic mixing and capture of analytes using MNPs, and MNPs as carriers in microfluidic devices has been investigated. Finally, the challenges and future directions of this upcoming field have been summarized. The use of MNP-based microfluidic devices, will help in developing decentralized or ‘ point of care’ testing globally, contributing to affordable healthcare, particularly, for middle- and low-income developing countries.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Yi Luo ◽  
Hyou-Arm Joung ◽  
Sarah Esparza ◽  
Jingyou Rao ◽  
Omai B. Garner ◽  
...  

Particle agglutination assays are widely adapted immunological tests that are based on antigen-antibody interactions. Antibody-coated microscopic particles are mixed with a test sample that potentially contains the target antigen, as...


Sign in / Sign up

Export Citation Format

Share Document