scholarly journals Model-Driven Approach for Realization of Data Collection Architectures for Cyber-Physical Systems of Systems to Lower Manual Implementation Efforts

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 745
Author(s):  
Emanuel Trunzer ◽  
Birgit Vogel-Heuser ◽  
Jan-Kristof Chen ◽  
Moritz Kohnle

Data collection from distributed automated production systems is one of the main prerequisites to leverage information gain from data analysis in the context of Industrie 4.0, e.g., for the optimization of product quality. However, the realization of data collection architectures is associated with immense implementation efforts due to the heterogeneity of systems, protocols, and interfaces, as well as the multitude of involved disciplines in such projects. Therefore, this paper contributes with an approach for the model-driven generation of data collection architectures to significantly lower manual implementation efforts. Via model transformations, the corresponding source code is automatically generated from formalized models that can be created using a graphical domain-specific language. The automatically generated architecture features support for various established IIoT protocols. In a lab-scale evaluation and a unique generalized extrapolation study, the significant effort savings compared to manual programming could be quantified. In conclusion, the proposed approach can successfully mitigate the current scientific and industrial challenges to enable wide-scale access to industrial data.

Author(s):  
Jesús Sánchez Cuadrado ◽  
Javier Luis Cánovas Izquierdo ◽  
Jesús García Molina

Domain Specific Languages (DSL) are becoming increasingly more important with the emergence of Model-Driven paradigms. Most literature on DSLs is focused on describing particular languages, and there is still a lack of works that compare different approaches or carry out empirical studies regarding the construction or usage of DSLs. Several design choices must be made when building a DSL, but one important question is whether the DSL will be external or internal, since this affects the other aspects of the language. This chapter aims to provide developers confronting the internal-external dichotomy with guidance, through a comparison of the RubyTL and Gra2MoL model transformations languages, which have been built as an internal DSL and an external DSL, respectively. Both languages will first be introduced, and certain implementation issues will be discussed. The two languages will then be compared, and the advantages and disadvantages of each approach will be shown. Finally, some of the lessons learned will be presented.


Author(s):  
Sarra Roubi ◽  
Mohammed Erramdani ◽  
Samir Mbarki

<p><span lang="EN-US">A Rich Internet Applications (RIAs) combine the simplicity of the hypertext paradigm with the flexibility of desktop interfaces. These appliations were proposed as a solution to follow the rapid growth and evolution of the Graphical User Interfaces. However, RIAs are complex applications and their development requires designing and implementation which are time-consuming and the available tools are specialized in manual design. In this paper, we present a model driven approach to generat GUI for Rich Internet Application. The approach exploits the new language IFML recently adopted by the Object Management Group. We used frameworks and technologies known to Model-Driven Engineering, such as Eclipse Modeling Framework (EMF) for Meta-modeling, Query View Transformation (QVT) for model transformations and Acceleo for code generation. The approach allows to quickly and efficiently generating a RIA focusing on the graphical aspect of the application.</span></p>


Author(s):  
Marília Freire ◽  
Uirá Kulesza ◽  
Eduardo Aranha ◽  
Gustavo Nery ◽  
Daniel Costa ◽  
...  

The research about the formalization and conduction of controlled experiments in software engineering has reported important insights and guidelines for their organization. However, the computational support to formalize and execute controlled experiments still requires deeper investigation. In this context, this paper presents an empirical study that evaluates a domain-specific language (DSL) proposed to formalize controlled experiments in software engineering. The language is part of a model-driven approach that allows the generation of executable workflows for the experiment participants, according to the statistical design of the experiment. Our study involves the modeling of 16 software engineering experiments to analyze the completeness and expressiveness of the investigated DSL when specifying different controlled experiments. The results highlight several limitations of the DSL that affect the formalization and execution of experiments. These outcomes were used to extend and improve the evaluated DSL. Finally, the improved version of the language was used to model the same experiments in order to illustrate the benefits of the proposed improvements.


2018 ◽  
Vol 66 (10) ◽  
pp. 819-833 ◽  
Author(s):  
Alexandra Mazak ◽  
Arndt Lüder ◽  
Sabine Wolny ◽  
Manuel Wimmer ◽  
Dietmar Winkler ◽  
...  

Abstract Production system operators need support for collecting and pre-processing data on production systems consisting of several system components, as foundation for optimization and defect detection. Traditional approaches based on hard-coded programming of such run-time data collection systems take time and effort, and require both domain and technology knowledge. In this article, we introduce the AML-RTDC approach, which combines the strengths of AutomationML (AML) data modeling and model-driven engineering, to reduce the manual effort for realizing the run-time data collection (RTDC) system. We evaluate the feasibility of the AML-RTDC approach with a demonstration case about a lab-sized production system and a use case based on real-world requirements.


Author(s):  
KRISHNAKUMAR BALASUBRAMANIAN ◽  
ANIRUDDHA GOKHALE ◽  
YUEHUA LIN ◽  
JING ZHANG ◽  
JEFF GRAY

Domain-specific models increase the level of abstraction used to develop large-scale component-based systems. Model-driven development (MDD) approaches (e.g., Model-Integrated Computing and Model-Driven Architecture) emphasize the use of models at all stages of system development. Decomposing problems using MDD approaches may result in a separation of the artifacts in a way that impedes comprehension. For example, a single concern (such as deployment of a distributed system) may crosscut different orthogonal activities (such as component specification, interaction, packaging and planning). To keep track of all entities associated with a component, and to ensure that the constraints for the system as a whole are not violated, a purely model-driven approach imposes extra effort, thereby negating some of the benefits of MDD. This paper provides three contributions to the study of applying aspect-oriented techniques to address the crosscutting challenges of model-driven component-based distributed systems development. First, we identify the sources of crosscutting concerns that typically arise in model-driven development of component-based systems. Second, we describe how aspect-oriented model weaving helps modularize these crosscutting concerns using model transformations. Third, we describe how we have applied model weaving using a tool called the Constraint-Specification Aspect Weaver (C-SAW) in the context of the Platform-Independent Component Modeling Language (PICML), which is a domain-specific modeling language for developing component-based systems. A case study of a joint-emergency response system is presented to express the challenges in modeling a typical distributed system. Our experience shows that model weaving is an effective and scalable technique for dealing with crosscutting aspects of component-based systems development.


Author(s):  
Elena Planas ◽  
Gwendal Daniel ◽  
Marco Brambilla ◽  
Jordi Cabot

AbstractSoftware systems start to include other types of interfaces beyond the “traditional” Graphical-User Interfaces (GUIs). In particular, Conversational User Interfaces (CUIs) such as chat and voice are becoming more and more popular. These new types of interfaces embed smart natural language processing components to understand user requests and respond to them. To provide an integrated user experience all the user interfaces in the system should be aware of each other and be able to collaborate. This is what is known as a multiexperience User Interface. Despite their many benefits, multiexperience UIs are challenging to build. So far CUIs are created as standalone components using a platform-dependent set of libraries and technologies. This raises significant integration, evolution and maintenance issues. This paper explores the application of model-driven techniques to the development of software applications embedding a multiexperience User Interface. We will discuss how raising the abstraction level at which these interfaces are defined enables a faster development and a better deployment and integration of each interface with the rest of the software system and the other interfaces with whom it may need to collaborate. In particular, we propose a new Domain Specific Language (DSL) for specifying several types of CUIs and show how this DSL can be part of an integrated modeling environment able to describe the interactions between the modeled CUIs and the other models of the system (including the models of the GUI). We will use the standard Interaction Flow Modeling Language (IFML) as an example “host” language.


2017 ◽  
Vol 14 (3) ◽  
pp. 939-958 ◽  
Author(s):  
Sergej Chodarev ◽  
Jaroslav Porubän

In spite of its popularity, XML provides poor user experience and a lot of domain-specific languages can be improved by introducing custom, more humanfriendly notation. This paper presents an approach for design and development of the custom notation for existing XML-based language together with a translator between the new notation and XML. The approach supports iterative design of the language concrete syntax, allowing its modification based on users feedback. The translator is developed using a model-driven approach. It is based on explicit representation of language abstract syntax (metamodel) that can be augmented with mappings to both XML and the custom notation. We provide recommendations for application of the approach and demonstrate them on a case study of a language for definition of graphs.


Sign in / Sign up

Export Citation Format

Share Document