scholarly journals Efficient and Practical Correlation Filter Tracking

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 790
Author(s):  
Chengfei Zhu ◽  
Shan Jiang ◽  
Shuxiao Li ◽  
Xiaosong Lan

Visual tracking is a basic task in many applications. However, the heavy computation and low speed of many recent trackers limit their applications in some computing power restricted scenarios. On the other hand, the simple update scheme of most correlation filter-based trackers restricts their robustness during target deformation and occlusion. In this paper, we explore the update scheme of correlation filter-based trackers and propose an efficient and adaptive training sample update scheme. The training sample extracted in each frame is updated to the training set according to its distance between existing samples measured with a difference hashing algorithm or discarded according to tracking result reliability. In addition, we expand our new tracker to long-term tracking. On the basis of the proposed model updating mechanism, we propose a new tracking state discrimination mechanism to accurately judge tracking failure, and resume tracking after the target is recovered. Experiments on OTB-2015, Temple Color 128 and UAV123 (including UAV20L) demonstrate that our tracker performs favorably against state-of-the-art trackers with light computation and runs over 100 fps on desktop computer with Intel i7-8700 CPU(3.2 GHz).

Author(s):  
Hassan Jalili ◽  
Pierluigi Siano

Abstract Demand response programs are useful options in reducing electricity price, congestion relief, load shifting, peak clipping, valley filling and resource adequacy from the system operator’s viewpoint. For this purpose, many models of these programs have been developed. However, the availability of these resources has not been properly modeled in demand response models making them not practical for long-term studies such as in the resource adequacy problem where considering the providers’ responding uncertainties is necessary for long-term studies. In this paper, a model considering providers’ unavailability for unforced demand response programs has been developed. Temperature changes, equipment failures, simultaneous implementation of demand side management resources, popular TV programs and family visits are the main reasons that may affect the availability of the demand response providers to fulfill their commitments. The effectiveness of the proposed model has been demonstrated by numerical simulation.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Jianlei Zhang ◽  
Yukun Zeng ◽  
Binil Starly

AbstractData-driven approaches for machine tool wear diagnosis and prognosis are gaining attention in the past few years. The goal of our study is to advance the adaptability, flexibility, prediction performance, and prediction horizon for online monitoring and prediction. This paper proposes the use of a recent deep learning method, based on Gated Recurrent Neural Network architecture, including Long Short Term Memory (LSTM), which try to captures long-term dependencies than regular Recurrent Neural Network method for modeling sequential data, and also the mechanism to realize the online diagnosis and prognosis and remaining useful life (RUL) prediction with indirect measurement collected during the manufacturing process. Existing models are usually tool-specific and can hardly be generalized to other scenarios such as for different tools or operating environments. Different from current methods, the proposed model requires no prior knowledge about the system and thus can be generalized to different scenarios and machine tools. With inherent memory units, the proposed model can also capture long-term dependencies while learning from sequential data such as those collected by condition monitoring sensors, which means it can be accommodated to machine tools with varying life and increase the prediction performance. To prove the validity of the proposed approach, we conducted multiple experiments on a milling machine cutting tool and applied the model for online diagnosis and RUL prediction. Without loss of generality, we incorporate a system transition function and system observation function into the neural net and trained it with signal data from a minimally intrusive vibration sensor. The experiment results showed that our LSTM-based model achieved the best overall accuracy among other methods, with a minimal Mean Square Error (MSE) for tool wear prediction and RUL prediction respectively.


Author(s):  
Junshu Wang ◽  
Guoming Zhang ◽  
Wei Wang ◽  
Ka Zhang ◽  
Yehua Sheng

AbstractWith the rapid development of hospital informatization and Internet medical service in recent years, most hospitals have launched online hospital appointment registration systems to remove patient queues and improve the efficiency of medical services. However, most of the patients lack professional medical knowledge and have no idea of how to choose department when registering. To instruct the patients to seek medical care and register effectively, we proposed CIDRS, an intelligent self-diagnosis and department recommendation framework based on Chinese medical Bidirectional Encoder Representations from Transformers (BERT) in the cloud computing environment. We also established a Chinese BERT model (CHMBERT) trained on a large-scale Chinese medical text corpus. This model was used to optimize self-diagnosis and department recommendation tasks. To solve the limited computing power of terminals, we deployed the proposed framework in a cloud computing environment based on container and micro-service technologies. Real-world medical datasets from hospitals were used in the experiments, and results showed that the proposed model was superior to the traditional deep learning models and other pre-trained language models in terms of performance.


2006 ◽  
Vol 45 (03) ◽  
pp. 240-245 ◽  
Author(s):  
A. Shabo

Summary Objectives: This paper pursues the challenge of sustaining lifetime electronic health records (EHRs) based on a comprehensive socio-economic-medico-legal model. The notion of a lifetime EHR extends the emerging concept of a longitudinal and cross-institutional EHR and is invaluable information for increasing patient safety and quality of care. Methods: The challenge is how to compile and sustain a coherent EHR across the lifetime of an individual. Several existing and hypothetical models are described, analyzed and compared in an attempt to suggest a preferred approach. Results: The vision is that lifetime EHRs should be sustained by new players in the healthcare arena, who will function as independent health record banks (IHRBs). Multiple competing IHRBs would be established and regulated following preemptive legislation. They should be neither owned by healthcare providers nor by health insurer/payers or government agencies. The new legislation should also stipulate that the records located in these banks be considered the medico-legal copies of an individual’s records, and that healthcare providers no longer serve as the legal record keepers. Conclusions: The proposed model is not centered on any of the current players in the field; instead, it is focussed on the objective service of sustaining individual EHRs, much like financial banks maintain and manage financial assets. This revolutionary structure provides two main benefits: 1) Healthcare organizations will be able to cut the costs of long-term record keeping, and 2) healthcare providers will be able to provide better care based on the availability of a lifelong EHR of their new patients.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1671
Author(s):  
Jibing Gong ◽  
Cheng Wang ◽  
Zhiyong Zhao ◽  
Xinghao Zhang

In MOOCs, generally speaking, curriculum designing, course selection, and knowledge concept recommendation are the three major steps that systematically instruct users to learn. This paper focuses on the knowledge concept recommendation in MOOCs, which recommends related topics to users to facilitate their online study. The existing approaches only consider the historical behaviors of users, but ignore various kinds of auxiliary information, which are also critical for user embedding. In addition, traditional recommendation models only consider the immediate user response to the recommended items, and do not explicitly consider the long-term interests of users. To deal with the above issues, this paper proposes AGMKRec, a novel reinforced concept recommendation model with a heterogeneous information network. We first clarify the concept recommendation in MOOCs as a reinforcement learning problem to offer a personalized and dynamic knowledge concept label list to users. To consider more auxiliary information of users, we construct a heterogeneous information network among users, courses, and concepts, and use a meta-path-based method which can automatically identify useful meta-paths and multi-hop connections to learn a new graph structure for learning effective node representations on a graph. Comprehensive experiments and analyses on a real-world dataset collected from XuetangX show that our proposed model outperforms some state-of-the-art methods.


Author(s):  
William Hilth ◽  
David Ryckelynck ◽  
Claire Menet

The development and generalization of Digital Volume Correlation (DVC) on X-ray computed tomography data highlight the issue of long term storage. The present paper proposes a new model-free method for pruning the DVC data. The size of the remaining sampled data can be user-defined, depending on the needs concerning storage space. The data pruning procedure is deeply linked to hyper-reduction techniques. The DVC data of a resin-bonded sand tested in uniaxial compression is used as an illustrating example. The relevance of the pruned data is tested afterwards for model calibration. A new Finite Element Model Updating (FEMU) technique coupled with an hybrid hyper-reduction method is used to successfully calibrate a constitutive model of the resin bonded sand with the pruned data only.


2021 ◽  
Vol 12 ◽  
Author(s):  
Navjot Bhullar ◽  
Rebecca L. Sanford ◽  
Myfanwy Maple

The Continuum of Survivorship proposes a way in which individuals may experience the suicide death of someone known to them along a continuum from being exposed to the death through to long-term bereavement. The present study provides a first empirical testing of the proposed model in an Australian community sample exposed to suicide. Using a Latent Profile Analysis, we tested the suicide exposure risk factors (time since death, frequency of pre-death contact, reported closeness, and perceived impact) to map to the Continuum of Survivorship model. Results revealed identification of five profiles, with four ranging from suicide exposed to suicide bereaved long-term broadly aligning with the proposed model, with one further profile being identified that represented a discordant profile of low closeness and high impact of suicide exposure. Our findings demonstrate that while the proposed model is useful to better understand the psychological distress related to exposure to suicide, it cannot be used as “shorthand” for identifying those who will be most distressed, nor those who may most likely need additional support following a suicide death. Implications and future research directions are discussed.


2021 ◽  
Vol 9 (6) ◽  
pp. 42
Author(s):  
Kristine Zaidi

There is a substantial body of literature on Russian foreign policy; however, the decision-making aspect remains comparatively less explored. The ambition of this research developed in two directions; on a practical level, it contributes to knowledge on Russia’s foreign policy decision-making and, on a conceptual plane, to scholarship by way of theory development, underpinning academic research on decision-making in foreign policy. Russia’s decision-making was first viewed through the prism of the Rational Actor Model and Incrementalism; however, their utility was found to be limited. Blended models also did not figure strongly. Through the prism of author’s proposed model of Strategic Incrementalism and its principles, this research demonstrates that Russia’s foreign-policy decision-making is far from a case of ‘muddling through,’ it retains a long-term purposefulness, and that its incremental decisions are guided by farsightedness. The simplicity and general applicability of the model potentially suggest its broader utility.


Sign in / Sign up

Export Citation Format

Share Document