scholarly journals An Optical Chiral Sensor Based on Weak Measurement for the Real-Time Monitoring of Sucrose Hydrolysis

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 1003
Author(s):  
Dongmei Li ◽  
Chaofan Weng ◽  
Yi Ruan ◽  
Kan Li ◽  
Guoan Cai ◽  
...  

A chiral sensor with optical rotation detection based on weak measurement for the kinetic study of sucrose hydrolysis is presented. Based on the polarization modulation to the pre-selection state, the optical rotation of chiral sample was accurately determined through the central wavelength shift of the output spectrum. With this approach, the concentration response curves of sucrose and its hydrolysis products, i.e., fructose and glucose, were experimentally obtained for the hydrolysis analysis. By collecting the output spectrum with a frequency of 100 Hz and fitting the central wavelength shift synchronously during the measurement, the sucrose hydrolysis process was monitored in real time. Different hydrolysis conditions with varied concentration of invertase enzyme and citrate were implemented in this work. As a consequence, the real-time hydrolysis curves of the hydrolysis process with distinct velocities was achieved and analyzed. Such a kinetic monitoring about sucrose hydrolysis with optical rotation detection technology played a critical role in the researches involving sucrose, and also revealed the great potential of weak measurement in intersections, such as food safety inspection and chemical analysis.

2019 ◽  
Vol 11 (16) ◽  
pp. 2223-2230
Author(s):  
Zhen Qiao ◽  
Lixuan Shi ◽  
Tian Guan ◽  
Yang Xu ◽  
Cuixia Guo ◽  
...  

A simple transmission optical rotation (OR) configuration based on weak measurement was developed for the real-time determination of d- and l-lactate.


2006 ◽  
Vol 15 (04) ◽  
pp. 571-606
Author(s):  
SAMIR M. KORIEM

As real-time systems continue to grow, performance evaluation plays a critical role in the design of these systems since the computation time, the service time, and the responsive actions must satisfy the time constraints. One of these systems is the real-time distributed multimedia-on-demand (MOD) service system. The MOD system usually fails when it misses a task deadline. The main units of the MOD system usually communicate with each other and work concurrently under timing constraints. The MOD system is designed to store, retrieve, schedule, synchronize and communicate objects comprising of mixed data types including images, text, video and audio, in real-time. In the MOD system, such data types represent the main concept of movie files. Modeling of such concurrency, communication, timing, and multimedia service (e.g., store, retrieve) is essential for evaluating the real-time MOD system. To illustrate how to model and analyze the important multimedia aspects of the MOD system, we use the Real-net (R-net) modeling technique. We choose R-net as an extension of Time Petri Net due to its ability to specify hard real-time process interaction, represent the synchronization of multimedia entities, describe concurrent multimedia activities, and illustrate the inter-process timing relationships as required for multimedia presentation. Based on modular techniques, we build three R-net performance models for describing the dynamic behavior of the MOD service system. The first model adopts the Earliest Deadline First (EDF) disk scheduling algorithm. The other models adopt the Scan-EDF algorithm. These algorithms help us to illustrate how the real-time user requests can be satisfied within the specified deadline times. Since R-nets are amenable to analysis including Markov process modeling, the interesting performance measures of the MOD service system such as the quality of service, the request response time, the disk scheduling algorithm time, and the actual retrieval time can be easily computed. In the performance analysis of the MOD models, we use our R-NET package.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3788 ◽  
Author(s):  
Yang Xu ◽  
Lixuan Shi ◽  
Tian Guan ◽  
Suyi Zhong ◽  
Xuesi Zhou ◽  
...  

We propose a self-referential fast detection scheme for a frequency domain weak measurement system for the detection of enantiomeric impurities in chiral molecules. In a transmissive weak measurement system, the optical rotation (OR) is used to modify the pre-selected polarization state and the post-selection polarization state. We obtained the sum and difference of the optical rotations produced by the sample and the standard by rotating the quarter wave plate in the system. Then, we estimate the ratio of chiral molecules to enantiomeric impurities using the ratio of the central wavelength shifts caused by the addition and subtraction states described above. In this paper, our system has an optical resolution of 1.88 × 10−5°. At the same time, we completed the detection of the ratio of the two substances in the mixture of L-proline and D-proline in different proportions, which proved that our system can quickly detect the content of enantiomeric impurities in chiral molecules.


Author(s):  
Cheng Chen ◽  
Jose Valdovinos ◽  
Wenshen Pong

Laboratory experiments play a critical role in earthquake engineering research for seismic safety evaluation of civil engineering structures. Real-time hybrid simulation provides a viable alternative for shake table testing to evaluate seismic performances of structures with rate-dependent seismic devices. Servo-hydraulic actuators play a vital role in a real-time hybrid simulation to maintain the boundary condition between the analytical and experimental substructures. Compensation of actuator delay is critical to minimize synchronization error from actuator delay and to achieve a successful real-time hybrid simulation. Research on how actuator delay can affect the real-time hybrid simulation involving viscous fluid damper is presented in this study. It is demonstrated that although the viscous fluid damper can help stabilize the real-time hybrid simulation with actuator delay, the experimental results need to be interpreted appropriately to evaluate the performance of viscous fluid damper for seismic hazard mitigation.


2014 ◽  
Author(s):  
Irving Biederman ◽  
Ori Amir
Keyword(s):  

2015 ◽  
Vol 2 (1) ◽  
pp. 35-41
Author(s):  
Rivan Risdaryanto ◽  
Houtman P. Siregar ◽  
Dedy Loebis

The real-time system is now used on many fields, such as telecommunication, military, information system, evenmedical to get information quickly, on time and accurate. Needless to say, a real-time system will always considerthe performance time. In our application, we define the time target/deadline, so that the system should execute thewhole tasks under predefined deadline. However, if the system failed to finish the tasks, it will lead to fatal failure.In other words, if the system cannot be executed on time, it will affect the subsequent tasks. In this paper, wepropose a real-time system for sending data to find effectiveness and efficiency. Sending data process will beconstructed in MATLAB and sending data process has a time target as when data will send.


Sign in / Sign up

Export Citation Format

Share Document